
4.1	Types	of	Classifiers
Before	presenting	specific	techniques,	we	first	categorize	the	different	types	of
classifiers	available.	One	way	to	distinguish	classifiers	is	by	considering	the
characteristics	of	their	output.

Binary	versus	Multiclass

Binary	classifiers	assign	each	data	instance	to	one	of	two	possible	labels,
typically	denoted	as	 	and	 .	The	positive	class	usually	refers	to	the
category	we	are	more	interested	in	predicting	correctly	compared	to	the
negative	class	(e.g.,	the	 	category	in	email	classification	problems).	If
there	are	more	than	two	possible	labels	available,	then	the	technique	is	known
as	a	multiclass	classifier.	As	some	classifiers	were	designed	for	binary	classes
only,	they	must	be	adapted	to	deal	with	multiclass	problems.	Techniques	for
transforming	binary	classifiers	into	multiclass	classifiers	are	described	in
Section	4.12 .

Deterministic	versus	Probabilistic

A	deterministic	classifier	produces	a	discrete-valued	label	to	each	data
instance	it	classifies	whereas	a	probabilistic	classifier	assigns	a	continuous
score	between	0	and	1	to	indicate	how	likely	it	is	that	an	instance	belongs	to	a
particular	class,	where	the	probability	scores	for	all	the	classes	sum	up	to	1.
Some	examples	of	probabilistic	classifiers	include	the	naïve	Bayes	classifier,
Bayesian	networks,	and	logistic	regression.	Probabilistic	classifiers	provide
additional	information	about	the	confidence	in	assigning	an	instance	to	a	class
than	deterministic	classifiers.	A	data	instance	is	typically	assigned	to	the	class

+1 −1

with	the	highest	probability	score,	except	when	the	cost	of	misclassifying	the
class	with	lower	probability	is	significantly	higher.	We	will	discuss	the	topic	of
cost-sensitive	classification	with	probabilistic	outputs	in	Section	4.11.2 .

Another	way	to	distinguish	the	different	types	of	classifiers	is	based	on	their
technique	for	discriminating	instances	from	different	classes.

Linear	versus	Nonlinear

A	linear	classifier	uses	a	linear	separating	hyperplane	to	discriminate
instances	from	different	classes	whereas	a	nonlinear	classifier	enables	the
construction	of	more	complex,	nonlinear	decision	surfaces.	We	illustrate	an
example	of	a	linear	classifier	(perceptron)	and	its	nonlinear	counterpart	(multi-
layer	neural	network)	in	Section	4.7 .	Although	the	linearity	assumption
makes	the	model	less	flexible	in	terms	of	fitting	complex	data,	linear	classifiers
are	thus	less	susceptible	to	model	overfitting	compared	to	nonlinear
classifiers.	Furthermore,	one	can	transform	the	original	set	of	attributes,	

,	into	a	more	complex	feature	set,	e.g.,	
,	before	applying	the	linear	classifier.	Such	feature

transformation	allows	the	linear	classifier	to	fit	data	sets	with	nonlinear
decision	surfaces	(see	Section	4.9.4).

Global	versus	Local

A	global	classifier	fits	a	single	model	to	the	entire	data	set.	Unless	the	model
is	highly	nonlinear,	this	one-size-fits-all	strategy	may	not	be	effective	when	the
relationship	between	the	attributes	and	the	class	labels	varies	over	the	input
space.	In	contrast,	a	local	classifier	partitions	the	input	space	into	smaller
regions	and	fits	a	distinct	model	to	training	instances	in	each	region.	The	k-
nearest	neighbor	classifier	(see	Section	4.3)	is	a	classic	example	of	local
classifiers.	While	local	classifiers	are	more	flexible	in	terms	of	fitting	complex

x=
(x1,	x2,	⋯	,xd) Φ(x)=
(x1,	x2,	x1x2,	x12,	x22,	⋯)

decision	boundaries,	they	are	also	more	susceptible	to	the	model	overfitting
problem,	especially	when	the	local	regions	contain	few	training	examples.

Generative	versus	Discriminative

Given	a	data	instance	 ,	the	primary	objective	of	any	classifier	is	to	predict
the	class	label,	y,	of	the	data	instance.	However,	apart	from	predicting	the
class	label,	we	may	also	be	interested	in	describing	the	underlying
mechanism	that	generates	the	instances	belonging	to	every	class	label.	For
example,	in	the	process	of	classifying	spam	email	messages,	it	may	be	useful
to	understand	the	typical	characteristics	of	email	messages	that	are	labeled
as	spam,	e.g.,	specific	usage	of	keywords	in	the	subject	or	the	body	of	the
email.	Classifiers	that	learn	a	generative	model	of	every	class	in	the	process
of	predicting	class	labels	are	known	as	generative	classifiers.	Some	examples
of	generative	classifiers	include	the	naïve	Bayes	classifier	and	Bayesian
networks.	In	contrast,	discriminative	classifiers	directly	predict	the	class	labels
without	explicitly	describing	the	distribution	of	every	class	label.	They	solve	a
simpler	problem	than	generative	models	since	they	do	not	have	the	onus	of
deriving	insights	about	the	generative	mechanism	of	data	instances.	They	are
thus	sometimes	preferred	over	generative	models,	especially	when	it	is	not
crucial	to	obtain	information	about	the	properties	of	every	class.	Some
examples	of	discriminative	classifiers	include	decision	trees,	rule-based
classifier,	nearest	neighbor	classifier,	artificial	neural	networks,	and	support
vector	machines.

4.2	Rule-Based	Classifier
A	rule-based	classifier	uses	a	collection	of	“if	…then…”	rules	(also	known	as	a
rule	set)	to	classify	data	instances.	Table	4.1 	shows	an	example	of	a	rule
set	generated	for	the	vertebrate	classification	problem	described	in	the
previous	chapter.	Each	classification	rule	in	the	rule	set	can	be	expressed	in
the	following	way:

The	left-hand	side	of	the	rule	is	called	the	rule	antecedent	or	precondition.	It
contains	a	conjunction	of	attribute	test	conditions:

where	 	is	an	attribute-value	pair	and	op	is	a	comparison	operator
chosen	from	the	set	 .	Each	attribute	test	 	is	also
known	as	a	conjunct.	The	right-hand	side	of	the	rule	is	called	the	rule
consequent,	which	contains	the	predicted	class	 .

A	rule	r	covers	a	data	instance	x	if	the	precondition	of	r	matches	the	attributes
of	x.	r	is	also	said	to	be	fired	or	triggered	whenever	it	covers	a	given	instance.
For	an	illustration,	consider	the	rule	 	given	in	Table	4.1 	and	the	following
attributes	for	two	vertebrates:	hawk	and	grizzly	bear.

Table	4.1.	Example	of	a	rule	set	for	the	vertebrate	classification	problem.

ri:(Conditioni)→yi. (4.1)

Conditioni=(A1	op	v1)∧(A2	op	v2)…(Ak	op	vk), (4.2)

(Aj,	vj)
{=,	≠,	<,	>,	≤,	≥} (Aj	op	vj)

yi

r1

r1:(Gives	Birth=no)∧(Aerial	Creature=yes)→Birdsr2:(Gives	Birth=no)∧(Aquatic	Creature=yes)→Fishesr3:(Gives	Birth=yes)∧(Body	Temperature=warm-
blooded)→Mammalsr4:(Gives	Birth=no)∧(Aerial	Creature=no)→Reptilesr5:(Aquatic	Creature=semi)→Amphibians

Name Body
Temperature

Skin
Cover

Gives
Birth

Aquatic
Creature

Aerial
Creature

Has
Legs

Hibernates

hawk warm-
blooded

feather no no yes yes no

grizzly
bear

warm-
blooded

fur yes no no yes yes

	covers	the	first	vertebrate	because	its	precondition	is	satisfied	by	the
hawk's	attributes.	The	rule	does	not	cover	the	second	vertebrate	because
grizzly	bears	give	birth	to	their	young	and	cannot	fly,	thus	violating	the
precondition	of	 .

The	quality	of	a	classification	rule	can	be	evaluated	using	measures	such	as
coverage	and	accuracy.	Given	a	data	set	D	and	a	classification	rule	r	:	 ,
the	coverage	of	the	rule	is	the	fraction	of	instances	in	D	that	trigger	the	rule	r.
On	the	other	hand,	its	accuracy	or	confidence	factor	is	the	fraction	of
instances	triggered	by	r	whose	class	labels	are	equal	to	y.	The	formal
definitions	of	these	measures	are

where	 	is	the	number	of	instances	that	satisfy	the	rule	antecedent,	 	is
the	number	of	instances	that	satisfy	both	the	antecedent	and	consequent,	and

	is	the	total	number	of	instances.

Example	4.1.
Consider	the	data	set	shown	in	Table	4.2 .	The	rule

r1

r1

A→y

Coverage(r)=|	A	||	D	|Coverage(r)=|A∩y	||	A	|, (4.3)

|A| |A∩y|

|D|

(Gives	Birth=yes)∧(Body	Temperature=warm-blooded)→Mammals

has	a	coverage	of	33%	since	five	of	the	fifteen	instances	support	the	rule
antecedent.	The	rule	accuracy	is	100%	because	all	five	vertebrates
covered	by	the	rule	are	mammals.

Table	4.2.	The	vertebrate	data	set.
Name Body

Temperature
Skin
Cover

Gives
Birth

Aquatic
Creature

Aerial
Creature

Has
Legs

Hibernates Class
Label

human warm-
blooded

hair yes no no yes no Mammals

python cold-blooded scales no no no no yes Reptiles

salmon cold-blooded scales no yes no no no Fishes

whale warm-
blooded

hair yes yes no no no Mammals

frog cold-blooded none no semi no yes yes Amphibians

komodo
dragon

cold-blooded scales no no no yes no Reptiles

bat warm-
blooded

hair yes no yes yes yes Mammals

pigeon warm-
blooded

feathers no no yes yes no Birds

cat warm-
blooded

fur yes no no yes no Mammals

guppy cold-blooded scales yes yes no no no Fishes

alligator cold-blooded scales no semi no yes no Reptiles

penguin warm-

blooded

feathers no semi no yes no Birds

porcupine warm-
blooded

quills yes no no yes yes Mammals

eel cold-blooded scales no yes no no no Fishes

4.2.1	How	a	Rule-Based	Classifier
Works

A	rule-based	classifier	classifies	a	test	instance	based	on	the	rule	triggered	by
the	instance.	To	illustrate	how	a	rule-based	classifier	works,	consider	the	rule
set	shown	in	Table	4.1 	and	the	following	vertebrates:

Name Body
Temperature

Skin
Cover

Gives
Birth

Aquatic
Creature

Aerial
Creature

Has
Legs

Hibernates

lemur warm-
blooded

fur yes no no yes yes

turtle cold-blooded scales no semi no yes no

dogfish
shark

cold-blooded scales yes yes no no no

The	first	vertebrate,	which	is	a	lemur,	is	warm-blooded	and	gives	birth	to	its
young.	It	triggers	the	rule	 ,	and	thus,	is	classified	as	a	mammal.
The	second	vertebrate,	which	is	a	turtle,	triggers	the	rules	 	and	 .	Since
the	classes	predicted	by	the	rules	are	contradictory	(reptiles	versus
amphibians),	their	conflicting	classes	must	be	resolved.
None	of	the	rules	are	applicable	to	a	dogfish	shark.	In	this	case,	we	need
to	determine	what	class	to	assign	to	such	a	test	instance.

eel cold-blooded scales no yes no no no Fishes

salamander cold-blooded none no semi no yes yes Amphibians

r3
r4 r5

4.2.2	Properties	of	a	Rule	Set

The	rule	set	generated	by	a	rule-based	classifier	can	be	characterized	by	the
following	two	properties.

Definition	4.1	(Mutually	Exclusive	Rule
Set).
The	rules	in	a	rule	set	R	are	mutually	exclusive	if	no	two	rules	in
R	are	triggered	by	the	same	instance.	This	property	ensures	that
every	instance	is	covered	by	at	most	one	rule	in	R.

Definition	4.2	(Exhaustive	Rule	Set).
A	rule	set	R	has	exhaustive	coverage	if	there	is	a	rule	for	each
combination	of	attribute	values.	This	property	ensures	that	every
instance	is	covered	by	at	least	one	rule	in	R.

Table	4.3.	Example	of	a	mutually	exclusive	and	exhaustive	rule	set.

r1:	(Body	Temperature=cold-blooded)→Non-mammalsr2:	(Body	Temperature=warm-
blooded)∧(Gives	Birth=yes)→Mammalsr3:	(Body	Temperature=warm-

Together,	these	two	properties	ensure	that	every	instance	is	covered	by
exactly	one	rule.	An	example	of	a	mutually	exclusive	and	exhaustive	rule	set
is	shown	in	Table	4.3 .	Unfortunately,	many	rule-based	classifiers,	including
the	one	shown	in	Table	4.1 ,	do	not	have	such	properties.	If	the	rule	set	is
not	exhaustive,	then	a	default	rule,	 ,	must	be	added	to	cover	the
remaining	cases.	A	default	rule	has	an	empty	antecedent	and	is	triggered
when	all	other	rules	have	failed.	 	is	known	as	the	default	class	and	is
typically	assigned	to	the	majority	class	of	training	instances	not	covered	by	the
existing	rules.	If	the	rule	set	is	not	mutually	exclusive,	then	an	instance	can	be
covered	by	more	than	one	rule,	some	of	which	may	predict	conflicting	classes.

Definition	4.3	(Ordered	Rule	Set).
The	rules	in	an	ordered	rule	set	R	are	ranked	in	decreasing
order	of	their	priority.	An	ordered	rule	set	is	also	known	as	a
decision	list.

The	rank	of	a	rule	can	be	defined	in	many	ways,	e.g.,	based	on	its	accuracy	or
total	description	length.	When	a	test	instance	is	presented,	it	will	be	classified
by	the	highest-ranked	rule	that	covers	the	instance.	This	avoids	the	problem
of	having	conflicting	classes	predicted	by	multiple	classification	rules	if	the	rule
set	is	not	mutually	exclusive.

blooded)∧(Gives	Birth=no)→Non-mammals

rd:	()→yd

yd

An	alternative	way	to	handle	a	non-mutually	exclusive	rule	set	without
ordering	the	rules	is	to	consider	the	consequent	of	each	rule	triggered	by	a
test	instance	as	a	vote	for	a	particular	class.	The	votes	are	then	tallied	to
determine	the	class	label	of	the	test	instance.	The	instance	is	usually
assigned	to	the	class	that	receives	the	highest	number	of	votes.	The	vote	may
also	be	weighted	by	the	rule's	accuracy.	Using	unordered	rules	to	build	a	rule-
based	classifier	has	both	advantages	and	disadvantages.	Unordered	rules	are
less	susceptible	to	errors	caused	by	the	wrong	rule	being	selected	to	classify
a	test	instance	unlike	classifiers	based	on	ordered	rules,	which	are	sensitive
to	the	choice	of	rule-ordering	criteria.	Model	building	is	also	less	expensive
because	the	rules	do	not	need	to	be	kept	in	sorted	order.	Nevertheless,
classifying	a	test	instance	can	be	quite	expensive	because	the	attributes	of
the	test	instance	must	be	compared	against	the	precondition	of	every	rule	in
the	rule	set.

In	the	next	two	sections,	we	present	techniques	for	extracting	an	ordered	rule
set	from	data.	A	rule-based	classifier	can	be	constructed	using	(1)	direct
methods,	which	extract	classification	rules	directly	from	data,	and	(2)	indirect
methods,	which	extract	classification	rules	from	more	complex	classification
models,	such	as	decision	trees	and	neural	networks.	Detailed	discussions	of
these	methods	are	presented	in	Sections	4.2.3 	and	4.2.4 ,	respectively.

4.2.3	Direct	Methods	for	Rule
Extraction

To	illustrate	the	direct	method,	we	consider	a	widely-used	rule	induction
algorithm	called	RIPPER.	This	algorithm	scales	almost	linearly	with	the
number	of	training	instances	and	is	particularly	suited	for	building	models	from

data	sets	with	imbalanced	class	distributions.	RIPPER	also	works	well	with
noisy	data	because	it	uses	a	validation	set	to	prevent	model	overfitting.

RIPPER	uses	the	sequential	covering	algorithm	to	extract	rules	directly	from
data.	Rules	are	grown	in	a	greedy	fashion	one	class	at	a	time.	For	binary
class	problems,	RIPPER	chooses	the	majority	class	as	its	default	class	and
learns	the	rules	to	detect	instances	from	the	minority	class.	For	multiclass
problems,	the	classes	are	ordered	according	to	their	prevalence	in	the	training
set.	Let	 	be	the	ordered	list	of	classes,	where	 	is	the	least
prevalent	class	and	 	is	the	most	prevalent	class.	All	training	instances	that
belong	to	 	are	initially	labeled	as	positive	examples,	while	those	that	belong
to	other	classes	are	labeled	as	negative	examples.	The	sequential	covering
algorithm	learns	a	set	of	rules	to	discriminate	the	positive	from	negative
examples.	Next,	all	training	instances	from	 	are	labeled	as	positive,	while
those	from	classes	 	are	labeled	as	negative.	The	sequential
covering	algorithm	would	learn	the	next	set	of	rules	to	distinguish	 	from
other	remaining	classes.	This	process	is	repeated	until	we	are	left	with	only
one	class,	 ,	which	is	designated	as	the	default	class.

Example	4.1.	Sequential	covering	algorithm.

∈

∨

(y1,	y2,	…	,yc) y1
yc

y1

y2
y3,	y4,	⋯,	yc

y2

yc

A	summary	of	the	sequential	covering	algorithm	is	shown	in	Algorithm	4.1 .
The	algorithm	starts	with	an	empty	decision	list,	R,	and	extracts	rules	for	each
class	based	on	the	ordering	specified	by	the	class	prevalence.	It	iteratively
extracts	the	rules	for	a	given	class	y	using	the	Learn-One-Rule	function.	Once
such	a	rule	is	found,	all	the	training	instances	covered	by	the	rule	are
eliminated.	The	new	rule	is	added	to	the	bottom	of	the	decision	list	R.	This
procedure	is	repeated	until	the	stopping	criterion	is	met.	The	algorithm	then
proceeds	to	generate	rules	for	the	next	class.

Figure	4.1 	demonstrates	how	the	sequential	covering	algorithm	works	for	a
data	set	that	contains	a	collection	of	positive	and	negative	examples.	The	rule
R1,	whose	coverage	is	shown	in	Figure	4.1(b) ,	is	extracted	first	because	it
covers	the	largest	fraction	of	positive	examples.	All	the	training	instances
covered	by	R1	are	subsequently	removed	and	the	algorithm	proceeds	to	look
for	the	next	best	rule,	which	is	R2.

Learn-One-Rule	Function
Finding	an	optimal	rule	is	computationally	expensive	due	to	the	exponential
search	space	to	explore.	The	Learn-One-Rule	function	addresses	this
problem	by	growing	the	rules	in	a	greedy	fashion.	It	generates	an	initial	rule

,	where	the	left-hand	side	is	an	empty	set	and	the	right-hand	side
corresponds	to	the	positive	class.	It	then	refines	the	rule	until	a	certain
stopping	criterion	is	met.	The	accuracy	of	the	initial	rule	may	be	poor	because
some	of	the	training	instances	covered	by	the	rule	belong	to	the	negative

r:	{}→+

class.	A	new	conjunct	must	be	added	to	the	rule	antecedent	to	improve	its
accuracy.

Figure	4.1.
An	example	of	the	sequential	covering	algorithm.

RIPPER	uses	the	FOIL's	information	gain	measure	to	choose	the	best
conjunct	to	be	added	into	the	rule	antecedent.	The	measure	takes	into
consideration	both	the	gain	in	accuracy	and	support	of	a	candidate	rule,
where	support	is	defined	as	the	number	of	positive	examples	covered	by	the
rule.	For	example,	suppose	the	rule	 	initially	covers	 	positive
examples	and	 	negative	examples.	After	adding	a	new	conjunct	B,	the
extended	rule	 	covers	 	positive	examples	and	 	negative

r:	A→+ p0
n0
r′:	A∧B→+ p1 n1

examples.	The	FOIL's	information	gain	of	the	extended	rule	is	computed	as
follows:

RIPPER	chooses	the	conjunct	with	highest	FOIL's	information	gain	to	extend
the	rule,	as	illustrated	in	the	next	example.

Example	4.2.	[Foil's	Information	Gain]
Consider	the	training	set	for	the	vertebrate	classification	problem	shown	in
Table	4.2 .	Suppose	the	target	class	for	the	Learn-One-Rule	function	is
mammals.	Initially,	the	antecedent	of	the	rule	 	covers	5
positive	and	10	negative	examples.	Thus,	the	accuracy	of	the	rule	is	only
0.333.	Next,	consider	the	following	three	candidate	conjuncts	to	be	added
to	the	left-hand	side	of	the	rule:	 ,
and	 .	The	number	of	positive	and	negative	examples	covered
by	the	rule	after	adding	each	conjunct	along	with	their	respective	accuracy
and	FOIL's	information	gain	are	shown	in	the	following	table.

Candidate	rule Accuracy Info	Gain

3 0 1.000 4.755

5 1 0.714 5.498

2 4 0.200

Although	 	has	the	highest	accuracy	among	the	three
candidates,	the	conjunct	 	has	the	highest	FOIL's
information	gain.	Thus,	it	is	chosen	to	extend	the	rule	(see	Figure	4.2).

FOIL's	information	gain=p1×(log2p1p1+n1−log2p0p0+n0). (4.4)

{}→Mammals

Skin	cover=hair,	Body	temperature=warm
Has	legs=No

p1 n1

{Skin	Cover=hair}→mammals

{Body	temperature=wam}→mammals

{Has	legs=No}→mammals −0.737

Skin	cover=hair
Body	temperature=warm

This	process	continues	until	adding	new	conjuncts	no	longer	improves	the
information	gain	measure.

Rule	Pruning

The	rules	generated	by	the	Learn-One-Rule	function	can	be	pruned	to
improve	their	generalization	errors.	RIPPER	prunes	the	rules	based	on	their
performance	on	the	validation	set.	The	following	metric	is	computed	to
determine	whether	pruning	is	needed:	 ,	where	p(n)	is	the	number
of	positive	(negative)	examples	in	the	validation	set	covered	by	the	rule.	This
metric	is	monotonically	related	to	the	rule's	accuracy	on	the	validation	set.	If
the	metric	improves	after	pruning,	then	the	conjunct	is	removed.	Pruning	is
done	starting	from	the	last	conjunct	added	to	the	rule.	For	example,	given	a
rule	 ,	RIPPER	checks	whether	D	should	be	pruned	first,	followed	by
CD,	BCD,	etc.	While	the	original	rule	covers	only	positive	examples,	the
pruned	rule	may	cover	some	of	the	negative	examples	in	the	training	set.

Building	the	Rule	Set

After	generating	a	rule,	all	the	positive	and	negative	examples	covered	by	the
rule	are	eliminated.	The	rule	is	then	added	into	the	rule	set	as	long	as	it	does
not	violate	the	stopping	condition,	which	is	based	on	the	minimum	description
length	principle.	If	the	new	rule	increases	the	total	description	length	of	the
rule	set	by	at	least	d	bits,	then	RIPPER	stops	adding	rules	into	its	rule	set	(by
default,	d	is	chosen	to	be	64	bits).	Another	stopping	condition	used	by
RIPPER	is	that	the	error	rate	of	the	rule	on	the	validation	set	must	not	exceed
50%.

(p−n)/(p+n)

ABCD→y

Figure	4.2.
General-to-specific	and	specific-to-general	rule-growing	strategies.

RIPPER	also	performs	additional	optimization	steps	to	determine	whether
some	of	the	existing	rules	in	the	rule	set	can	be	replaced	by	better	alternative
rules.	Readers	who	are	interested	in	the	details	of	the	optimization	method
may	refer	to	the	reference	cited	at	the	end	of	this	chapter.

Instance	Elimination

After	a	rule	is	extracted,	RIPPER	eliminates	the	positive	and	negative
examples	covered	by	the	rule.	The	rationale	for	doing	this	is	illustrated	in	the
next	example.

Figure	4.3 	shows	three	possible	rules,	R1,	R2,	and	R3,	extracted	from	a
training	set	that	contains	29	positive	examples	and	21	negative	examples.
The	accuracies	of	R1,	R2,	and	R3	are	12/15	(80%),	7/10	(70%),	and	8/12
(66.7%),	respectively.	R1	is	generated	first	because	it	has	the	highest
accuracy.	After	generating	R1,	the	algorithm	must	remove	the	examples
covered	by	the	rule	so	that	the	next	rule	generated	by	the	algorithm	is	different
than	R1.	The	question	is,	should	it	remove	the	positive	examples	only,
negative	examples	only,	or	both?	To	answer	this,	suppose	the	algorithm	must
choose	between	generating	R2	or	R3	after	R1.	Even	though	R2	has	a	higher
accuracy	than	R3	(70%	versus	66.7%),	observe	that	the	region	covered	by	R2
is	disjoint	from	R1,	while	the	region	covered	by	R3	overlaps	with	R1.	As	a
result,	R1	and	R3	together	cover	18	positive	and	5	negative	examples
(resulting	in	an	overall	accuracy	of	78.3%),	whereas	R1	and	R2	together
cover	19	positive	and	6	negative	examples	(resulting	in	a	lower	overall
accuracy	of	76%).	If	the	positive	examples	covered	by	R1	are	not	removed,
then	we	may	overestimate	the	effective	accuracy	of	R3.	If	the	negative
examples	covered	by	R1	are	not	removed,	then	we	may	underestimate	the
accuracy	of	R3.	In	the	latter	case,	we	might	end	up	preferring	R2	over	R3
even	though	half	of	the	false	positive	errors	committed	by	R3	have	already
been	accounted	for	by	the	preceding	rule,	R1.	This	example	shows	that	the
effective	accuracy	after	adding	R2	or	R3	to	the	rule	set	becomes	evident	only
when	both	positive	and	negative	examples	covered	by	R1	are	removed.

Figure	4.3.
Elimination	of	training	instances	by	the	sequential	covering	algorithm.	R1,	R2,
and	R3	represent	regions	covered	by	three	different	rules.

4.2.4	Indirect	Methods	for	Rule
Extraction

This	section	presents	a	method	for	generating	a	rule	set	from	a	decision	tree.
In	principle,	every	path	from	the	root	node	to	the	leaf	node	of	a	decision	tree
can	be	expressed	as	a	classification	rule.	The	test	conditions	encountered
along	the	path	form	the	conjuncts	of	the	rule	antecedent,	while	the	class	label
at	the	leaf	node	is	assigned	to	the	rule	consequent.	Figure	4.4 	shows	an
example	of	a	rule	set	generated	from	a	decision	tree.	Notice	that	the	rule	set
is	exhaustive	and	contains	mutually	exclusive	rules.	However,	some	of	the
rules	can	be	simplified	as	shown	in	the	next	example.

Figure	4.4.
Converting	a	decision	tree	into	classification	rules.

Example	4.3.
Consider	the	following	three	rules	from	Figure	4.4 :

Observe	that	the	rule	set	always	predicts	a	positive	class	when	the	value
of	Q	is	Yes.	Therefore,	we	may	simplify	the	rules	as	follows:

	is	retained	to	cover	the	remaining	instances	of	the	positive	class.
Although	the	rules	obtained	after	simplification	are	no	longer	mutually
exclusive,	they	are	less	complex	and	are	easier	to	interpret.

In	the	following,	we	describe	an	approach	used	by	the	C4.5rules	algorithm	to
generate	a	rule	set	from	a	decision	tree.	Figure	4.5 	shows	the	decision	tree

r2:(P=No)∧(Q=Yes)→+r3:(P=Yes)∧(R=No)→+r5:
(P=Yes)∧(R=Yes)∧(Q=Yes)→+.

r2′:(Q=Yes)→+r3:(P=Yes)∧(R=No)→+.

r3

and	resulting	classification	rules	obtained	for	the	data	set	given	in	Table
4.2 .

Rule	Generation

Classification	rules	are	extracted	for	every	path	from	the	root	to	one	of	the	leaf
nodes	in	the	decision	tree.	Given	a	classification	rule	 ,	we	consider	a
simplified	rule,	 	where	 	is	obtained	by	removing	one	of	the	conjuncts
in	A.	The	simplified	rule	with	the	lowest	pessimistic	error	rate	is	retained
provided	its	error	rate	is	less	than	that	of	the	original	rule.	The	rule-pruning
step	is	repeated	until	the	pessimistic	error	of	the	rule	cannot	be	improved
further.	Because	some	of	the	rules	may	become	identical	after	pruning,	the
duplicate	rules	are	discarded.

Figure	4.5.

r:A→y
r′:A′→y A′

Classification	rules	extracted	from	a	decision	tree	for	the	vertebrate
classification	problem.

Rule	Ordering

After	generating	the	rule	set,	C4.5rules	uses	the	class-based	ordering	scheme
to	order	the	extracted	rules.	Rules	that	predict	the	same	class	are	grouped
together	into	the	same	subset.	The	total	description	length	for	each	subset	is
computed,	and	the	classes	are	arranged	in	increasing	order	of	their	total
description	length.	The	class	that	has	the	smallest	description	length	is	given
the	highest	priority	because	it	is	expected	to	contain	the	best	set	of	rules.	The
total	description	length	for	a	class	is	given	by	 ,	where

	is	the	number	of	bits	needed	to	encode	the	misclassified
examples,	Lmodel	is	the	number	of	bits	needed	to	encode	the	model,	and	g	is
a	tuning	parameter	whose	default	value	is	0.5.	The	tuning	parameter	depends
on	the	number	of	redundant	attributes	present	in	the	model.	The	value	of	the
tuning	parameter	is	small	if	the	model	contains	many	redundant	attributes.

4.2.5	Characteristics	of	Rule-Based
Classifiers

1.	 Rule-based	classifiers	have	very	similar	characteristics	as	decision
trees.	The	expressiveness	of	a	rule	set	is	almost	equivalent	to	that	of	a
decision	tree	because	a	decision	tree	can	be	represented	by	a	set	of
mutually	exclusive	and	exhaustive	rules.	Both	rule-based	and	decision
tree	classifiers	create	rectilinear	partitions	of	the	attribute	space	and
assign	a	class	to	each	partition.	However,	a	rule-based	classifier	can

Lexception+g×Lmodel
Lexception

allow	multiple	rules	to	be	triggered	for	a	given	instance,	thus	enabling
the	learning	of	more	complex	models	than	decision	trees.

2.	 Like	decision	trees,	rule-based	classifiers	can	handle	varying	types	of
categorical	and	continuous	attributes	and	can	easily	work	in	multiclass
classification	scenarios.	Rule-based	classifiers	are	generally	used	to
produce	descriptive	models	that	are	easier	to	interpret	but	give
comparable	performance	to	the	decision	tree	classifier.

3.	 Rule-based	classifiers	can	easily	handle	the	presence	of	redundant
attributes	that	are	highly	correlated	with	one	other.	This	is	because
once	an	attribute	has	been	used	as	a	conjunct	in	a	rule	antecedent,	the
remaining	redundant	attributes	would	show	little	to	no	FOIL's
information	gain	and	would	thus	be	ignored.

4.	 Since	irrelevant	attributes	show	poor	information	gain,	rule-based
classifiers	can	avoid	selecting	irrelevant	attributes	if	there	are	other
relevant	attributes	that	show	better	information	gain.	However,	if	the
problem	is	complex	and	there	are	interacting	attributes	that	can
collectively	distinguish	between	the	classes	but	individually	show	poor
information	gain,	it	is	likely	for	an	irrelevant	attribute	to	be	accidentally
favored	over	a	relevant	attribute	just	by	random	chance.	Hence,	rule-
based	classifiers	can	show	poor	performance	in	the	presence	of
interacting	attributes,	when	the	number	of	irrelevant	attributes	is	large.

5.	 The	class-based	ordering	strategy	adopted	by	RIPPER,	which
emphasizes	giving	higher	priority	to	rare	classes,	is	well	suited	for
handling	training	data	sets	with	imbalanced	class	distributions.

6.	 Rule-based	classifiers	are	not	well-suited	for	handling	missing	values	in
the	test	set.	This	is	because	the	position	of	rules	in	a	rule	set	follows	a
certain	ordering	strategy	and	even	if	a	test	instance	is	covered	by
multiple	rules,	they	can	assign	different	class	labels	depending	on	their
position	in	the	rule	set.	Hence,	if	a	certain	rule	involves	an	attribute	that
is	missing	in	a	test	instance,	it	is	difficult	to	ignore	the	rule	and	proceed

to	the	subsequent	rules	in	the	rule	set,	as	such	a	strategy	can	result	in
incorrect	class	assignments.

