
3	Classification:	Basic	Concepts	and
Techniques

Humans	have	an	innate	ability	to	classify	things	into
categories,	e.g.,	mundane	tasks	such	as	filtering	spam
email	messages	or	more	specialized	tasks	such	as
recognizing	celestial	objects	in	telescope	images	(see
Figure	3.1).	While	manual	classification	often	suffices
for	small	and	simple	data	sets	with	only	a	few
attributes,	larger	and	more	complex	data	sets	require
an	automated	solution.

Figure	3.1.
Classification	of	galaxies	from	telescope	images	taken
from	the	NASA	website.

This	chapter	introduces	the	basic	concepts	of
classification	and	describes	some	of	its	key	issues	such
as	model	overfitting,	model	selection,	and	model
evaluation.	While	these	topics	are	illustrated	using	a
classification	technique	known	as	decision	tree
induction,	most	of	the	discussion	in	this	chapter	is	also
applicable	to	other	classification	techniques,	many	of
which	are	covered	in	Chapter	4 .

3.1	Basic	Concepts
Figure	3.2 	illustrates	the	general	idea	behind	classification.	The	data	for	a
classification	task	consists	of	a	collection	of	instances	(records).	Each	such
instance	is	characterized	by	the	tuple	(,	y),	where	 	is	the	set	of	attribute
values	that	describe	the	instance	and	y	is	the	class	label	of	the	instance.	The
attribute	set	 	can	contain	attributes	of	any	type,	while	the	class	label	y	must
be	categorical.

Figure	3.2.
A	schematic	illustration	of	a	classification	task.

A	classification	model	is	an	abstract	representation	of	the	relationship
between	the	attribute	set	and	the	class	label.	As	will	be	seen	in	the	next	two
chapters,	the	model	can	be	represented	in	many	ways,	e.g.,	as	a	tree,	a
probability	table,	or	simply,	a	vector	of	real-valued	parameters.	More	formally,
we	can	express	it	mathematically	as	a	target	function	f	that	takes	as	input	the
attribute	set	 	and	produces	an	output	corresponding	to	the	predicted	class
label.	The	model	is	said	to	classify	an	instance	(,	y)	correctly	if	 .

Table	3.1 	shows	examples	of	attribute	sets	and	class	labels	for	various
classification	tasks.	Spam	filtering	and	tumor	identification	are	examples	of
binary	classification	problems,	in	which	each	data	instance	can	be	categorized
into	one	of	two	classes.	If	the	number	of	classes	is	larger	than	2,	as	in	the

f(x)=y

galaxy	classification	example,	then	it	is	called	a	multiclass	classification
problem.

Table	3.1.	Examples	of	classification	tasks.

Task Attribute	set Class	label

Spam	filtering Features	extracted	from	email	message	header
and	content

spam	or	non-spam

Tumor
identification

Features	extracted	from	magnetic	resonance
imaging	(MRI)	scans

malignant	or	benign

Galaxy
classification

Features	extracted	from	telescope	images elliptical,	spiral,	or
irregular-shaped

We	illustrate	the	basic	concepts	of	classification	in	this	chapter	with	the
following	two	examples.

3.1.	Example	Vertebrate	Classification
Table	3.2 	shows	a	sample	data	set	for	classifying	vertebrates	into
mammals,	reptiles,	birds,	fishes,	and	amphibians.	The	attribute	set
includes	characteristics	of	the	vertebrate	such	as	its	body	temperature,
skin	cover,	and	ability	to	fly.	The	data	set	can	also	be	used	for	a	binary
classification	task	such	as	mammal	classification,	by	grouping	the	reptiles,
birds,	fishes,	and	amphibians	into	a	single	category	called	non-mammals.

Table	3.2.	A	sample	data	for	the	vertebrate	classification	problem.
Vertebrate
Name

Body
Temperature

Skin
Cover

Gives
Birth

Aquatic
Creature

Aerial
Creature

Has
Legs

Hibernates Class
Label

human warm-

blooded

hair yes no no yes no mammal

3.2.	Example	Loan	Borrower	Classification
Consider	the	problem	of	predicting	whether	a	loan	borrower	will	repay	the
loan	or	default	on	the	loan	payments.	The	data	set	used	to	build	the

blooded

python cold-blooded scales no no no no yes reptile

salmon cold-blooded scales no yes no no no fish

whale warm-
blooded

hair yes yes no no no mammal

frog cold-blooded none no semi no yes yes amphibian

komodo cold-blooded scales no no no yes no reptile

dragon 	 	 	 	 	 	 	 	

bat warm-
blooded

hair yes no yes yes yes mammal

pigeon warm-
blooded

feathers no no yes yes no bird

cat warm-
blooded

fur yes no no yes no mammal

leopard cold-blooded scales yes yes no no no fish

shark 	 	 	 	 	 	 	 	

turtle cold-blooded scales no semi no yes no reptile

penguin warm-
blooded

feathers no semi no yes no bird

porcupine warm-
blooded

quills yes no no yes yes mammal

eel cold-blooded scales no yes no no no fish

salamander cold-blooded none no semi no yes yes amphibian

classification	model	is	shown	in	Table	3.3 .	The	attribute	set	includes
personal	information	of	the	borrower	such	as	marital	status	and	annual
income,	while	the	class	label	indicates	whether	the	borrower	had	defaulted
on	the	loan	payments.

Table	3.3.	A	sample	data	for	the	loan	borrower	classification	problem.

ID Home	Owner Marital	Status Annual	Income Defaulted?

1 Yes Single 125000 No

2 No Married 100000 No

3 No Single 70000 No

4 Yes Married 120000 No

5 No Divorced 95000 Yes

6 No Single 60000 No

7 Yes Divorced 220000 No

8 No Single 85000 Yes

9 No Married 75000 No

10 No Single 90000 Yes

A	classification	model	serves	two	important	roles	in	data	mining.	First,	it	is
used	as	a	predictive	model	to	classify	previously	unlabeled	instances.	A
good	classification	model	must	provide	accurate	predictions	with	a	fast
response	time.	Second,	it	serves	as	a	descriptive	model	to	identify	the
characteristics	that	distinguish	instances	from	different	classes.	This	is
particularly	useful	for	critical	applications,	such	as	medical	diagnosis,	where	it

is	insufficient	to	have	a	model	that	makes	a	prediction	without	justifying	how	it
reaches	such	a	decision.

For	example,	a	classification	model	induced	from	the	vertebrate	data	set
shown	in	Table	3.2 	can	be	used	to	predict	the	class	label	of	the	following
vertebrate:

In	addition,	it	can	be	used	as	a	descriptive	model	to	help	determine
characteristics	that	define	a	vertebrate	as	a	mammal,	a	reptile,	a	bird,	a	fish,
or	an	amphibian.	For	example,	the	model	may	identify	mammals	as	warm-
blooded	vertebrates	that	give	birth	to	their	young.

There	are	several	points	worth	noting	regarding	the	previous	example.	First,
although	all	the	attributes	shown	in	Table	3.2 	are	qualitative,	there	are	no
restrictions	on	the	type	of	attributes	that	can	be	used	as	predictor	variables.
The	class	label,	on	the	other	hand,	must	be	of	nominal	type.	This
distinguishes	classification	from	other	predictive	modeling	tasks	such	as
regression,	where	the	predicted	value	is	often	quantitative.	More	information
about	regression	can	be	found	in	Appendix	D.

Another	point	worth	noting	is	that	not	all	attributes	may	be	relevant	to	the
classification	task.	For	example,	the	average	length	or	weight	of	a	vertebrate
may	not	be	useful	for	classifying	mammals,	as	these	attributes	can	show
same	value	for	both	mammals	and	non-mammals.	Such	an	attribute	is
typically	discarded	during	preprocessing.	The	remaining	attributes	might	not
be	able	to	distinguish	the	classes	by	themselves,	and	thus,	must	be	used	in

Vertebrate
Name

Body
Temperature

Skin
Cover

Gives
Birth

Aquatic
Creature

Aerial
Creature

Has
Legs

Hibernates Class
Label

gila
monster

cold-blooded scales no no no yes yes ?

concert	with	other	attributes.	For	instance,	the	Body	Temperature	attribute	is
insufficient	to	distinguish	mammals	from	other	vertebrates.	When	it	is	used
together	with	Gives	Birth,	the	classification	of	mammals	improves	significantly.
However,	when	additional	attributes,	such	as	Skin	Cover	are	included,	the
model	becomes	overly	specific	and	no	longer	covers	all	mammals.	Finding	the
optimal	combination	of	attributes	that	best	discriminates	instances	from
different	classes	is	the	key	challenge	in	building	classification	models.

3.2	General	Framework	for
Classification
Classification	is	the	task	of	assigning	labels	to	unlabeled	data	instances	and	a
classifier	is	used	to	perform	such	a	task.	A	classifier	is	typically	described	in
terms	of	a	model	as	illustrated	in	the	previous	section.	The	model	is	created
using	a	given	a	set	of	instances,	known	as	the	training	set,	which	contains
attribute	values	as	well	as	class	labels	for	each	instance.	The	systematic
approach	for	learning	a	classification	model	given	a	training	set	is	known	as	a
learning	algorithm.	The	process	of	using	a	learning	algorithm	to	build	a
classification	model	from	the	training	data	is	known	as	induction.	This
process	is	also	often	described	as	“learning	a	model”	or	“building	a	model.”
This	process	of	applying	a	classification	model	on	unseen	test	instances	to
predict	their	class	labels	is	known	as	deduction.	Thus,	the	process	of
classification	involves	two	steps:	applying	a	learning	algorithm	to	training	data
to	learn	a	model,	and	then	applying	the	model	to	assign	labels	to	unlabeled
instances.	Figure	3.3 	illustrates	the	general	framework	for	classification.

Figure	3.3.
General	framework	for	building	a	classification	model.

A	classification	technique	refers	to	a	general	approach	to	classification,	e.g.,
the	decision	tree	technique	that	we	will	study	in	this	chapter.	This	classification
technique	like	most	others,	consists	of	a	family	of	related	models	and	a
number	of	algorithms	for	learning	these	models.	In	Chapter	4 ,	we	will	study
additional	classification	techniques,	including	neural	networks	and	support
vector	machines.

A	couple	notes	on	terminology.	First,	the	terms	“classifier”	and	“model”	are
often	taken	to	be	synonymous.	If	a	classification	technique	builds	a	single,

global	model,	then	this	is	fine.	However,	while	every	model	defines	a	classifier,
not	every	classifier	is	defined	by	a	single	model.	Some	classifiers,	such	as	k-
nearest	neighbor	classifiers,	do	not	build	an	explicit	model	(Section	4.3),
while	other	classifiers,	such	as	ensemble	classifiers,	combine	the	output	of	a
collection	of	models	(Section	4.10).	Second,	the	term	“classifier”	is	often
used	in	a	more	general	sense	to	refer	to	a	classification	technique.	Thus,	for
example,	“decision	tree	classifier”	can	refer	to	the	decision	tree	classification
technique	or	a	specific	classifier	built	using	that	technique.	Fortunately,	the
meaning	of	“classifier”	is	usually	clear	from	the	context.

In	the	general	framework	shown	in	Figure	3.3 ,	the	induction	and	deduction
steps	should	be	performed	separately.	In	fact,	as	will	be	discussed	later	in
Section	3.6 ,	the	training	and	test	sets	should	be	independent	of	each	other
to	ensure	that	the	induced	model	can	accurately	predict	the	class	labels	of
instances	it	has	never	encountered	before.	Models	that	deliver	such	predictive
insights	are	said	to	have	good	generalization	performance.	The
performance	of	a	model	(classifier)	can	be	evaluated	by	comparing	the
predicted	labels	against	the	true	labels	of	instances.	This	information	can	be
summarized	in	a	table	called	a	confusion	matrix.	Table	3.4 	depicts	the
confusion	matrix	for	a	binary	classification	problem.	Each	entry	 	denotes	the
number	of	instances	from	class	i	predicted	to	be	of	class	j.	For	example,	 	is
the	number	of	instances	from	class	0	incorrectly	predicted	as	class	1.	The
number	of	correct	predictions	made	by	the	model	is	 	and	the	number
of	incorrect	predictions	is	 .

Table	3.4.	Confusion	matrix	for	a	binary	classification	problem.

	 Predicted	Class

Actual	Class

fij
f01

(f11+f00)
(f10+f01)

Class=1 Class=0

Class=1 f11 f10

Although	a	confusion	matrix	provides	the	information	needed	to	determine
how	well	a	classification	model	performs,	summarizing	this	information	into	a
single	number	makes	it	more	convenient	to	compare	the	relative	performance
of	different	models.	This	can	be	done	using	an	evaluation	metric	such	as
accuracy,	which	is	computed	in	the	following	way:

Accuracy	=

For	binary	classification	problems,	the	accuracy	of	a	model	is	given	by

Error	rate	is	another	related	metric,	which	is	defined	as	follows	for	binary
classification	problems:

The	learning	algorithms	of	most	classification	techniques	are	designed	to
learn	models	that	attain	the	highest	accuracy,	or	equivalently,	the	lowest	error
rate	when	applied	to	the	test	set.	We	will	revisit	the	topic	of	model	evaluation
in	Section	3.6 .

Class=0 f01 f00

Accuracy=Number	of	correct	predictionsTotal	number	of	predictions. (3.1)

Accuracy=f11+f00f11+f10+f01+f00. (3.2)

Error	rate=Number	of	wrong	predictionsTotal	number	of	predictions=f10+f01f11(3.3)

3.3	Decision	Tree	Classifier
This	section	introduces	a	simple	classification	technique	known	as	the
decision	tree	classifier.	To	illustrate	how	a	decision	tree	works,	consider	the
classification	problem	of	distinguishing	mammals	from	non-mammals	using
the	vertebrate	data	set	shown	in	Table	3.2 .	Suppose	a	new	species	is
discovered	by	scientists.	How	can	we	tell	whether	it	is	a	mammal	or	a	non-
mammal?	One	approach	is	to	pose	a	series	of	questions	about	the
characteristics	of	the	species.	The	first	question	we	may	ask	is	whether	the
species	is	cold-	or	warm-blooded.	If	it	is	cold-blooded,	then	it	is	definitely	not	a
mammal.	Otherwise,	it	is	either	a	bird	or	a	mammal.	In	the	latter	case,	we
need	to	ask	a	follow-up	question:	Do	the	females	of	the	species	give	birth	to
their	young?	Those	that	do	give	birth	are	definitely	mammals,	while	those	that
do	not	are	likely	to	be	non-mammals	(with	the	exception	of	egg-laying
mammals	such	as	the	platypus	and	spiny	anteater).

The	previous	example	illustrates	how	we	can	solve	a	classification	problem	by
asking	a	series	of	carefully	crafted	questions	about	the	attributes	of	the	test
instance.	Each	time	we	receive	an	answer,	we	could	ask	a	follow-up	question
until	we	can	conclusively	decide	on	its	class	label.	The	series	of	questions	and
their	possible	answers	can	be	organized	into	a	hierarchical	structure	called	a
decision	tree.	Figure	3.4 	shows	an	example	of	the	decision	tree	for	the
mammal	classification	problem.	The	tree	has	three	types	of	nodes:

A	root	node,	with	no	incoming	links	and	zero	or	more	outgoing	links.
Internal	nodes,	each	of	which	has	exactly	one	incoming	link	and	two	or
more	outgoing	links.
Leaf	or	terminal	nodes,	each	of	which	has	exactly	one	incoming	link	and
no	outgoing	links.

Every	leaf	node	in	the	decision	tree	is	associated	with	a	class	label.	The	non-
terminal	nodes,	which	include	the	root	and	internal	nodes,	contain	attribute
test	conditions	that	are	typically	defined	using	a	single	attribute.	Each
possible	outcome	of	the	attribute	test	condition	is	associated	with	exactly	one
child	of	this	node.	For	example,	the	root	node	of	the	tree	shown	in	Figure
3.4 	uses	the	attribute	 	to	define	an	attribute	test	condition
that	has	two	outcomes,	warm	and	cold,	resulting	in	two	child	nodes.

Figure	3.4.
A	decision	tree	for	the	mammal	classification	problem.

Given	a	decision	tree,	classifying	a	test	instance	is	straightforward.	Starting
from	the	root	node,	we	apply	its	attribute	test	condition	and	follow	the
appropriate	branch	based	on	the	outcome	of	the	test.	This	will	lead	us	either
to	another	internal	node,	for	which	a	new	attribute	test	condition	is	applied,	or
to	a	leaf	node.	Once	a	leaf	node	is	reached,	we	assign	the	class	label
associated	with	the	node	to	the	test	instance.	As	an	illustration,	Figure	3.5

traces	the	path	used	to	predict	the	class	label	of	a	flamingo.	The	path
terminates	at	a	leaf	node	labeled	as	 .

Figure	3.5.
Classifying	an	unlabeled	vertebrate.	The	dashed	lines	represent	the	outcomes
of	applying	various	attribute	test	conditions	on	the	unlabeled	vertebrate.	The
vertebrate	is	eventually	assigned	to	the	 	class.

3.3.1	A	Basic	Algorithm	to	Build	a
Decision	Tree

Many	possible	decision	trees	that	can	be	constructed	from	a	particular	data
set.	While	some	trees	are	better	than	others,	finding	an	optimal	one	is
computationally	expensive	due	to	the	exponential	size	of	the	search	space.
Efficient	algorithms	have	been	developed	to	induce	a	reasonably	accurate,

albeit	suboptimal,	decision	tree	in	a	reasonable	amount	of	time.	These
algorithms	usually	employ	a	greedy	strategy	to	grow	the	decision	tree	in	a	top-
down	fashion	by	making	a	series	of	locally	optimal	decisions	about	which
attribute	to	use	when	partitioning	the	training	data.	One	of	the	earliest	method
is	Hunt's	algorithm,	which	is	the	basis	for	many	current	implementations	of
decision	tree	classifiers,	including	ID3,	C4.5,	and	CART.	This	subsection
presents	Hunt's	algorithm	and	describes	some	of	the	design	issues	that	must
be	considered	when	building	a	decision	tree.

Hunt's	Algorithm
In	Hunt's	algorithm,	a	decision	tree	is	grown	in	a	recursive	fashion.	The	tree
initially	contains	a	single	root	node	that	is	associated	with	all	the	training
instances.	If	a	node	is	associated	with	instances	from	more	than	one	class,	it
is	expanded	using	an	attribute	test	condition	that	is	determined	using	a
splitting	criterion.	A	child	leaf	node	is	created	for	each	outcome	of	the
attribute	test	condition	and	the	instances	associated	with	the	parent	node	are
distributed	to	the	children	based	on	the	test	outcomes.	This	node	expansion
step	can	then	be	recursively	applied	to	each	child	node,	as	long	as	it	has
labels	of	more	than	one	class.	If	all	the	instances	associated	with	a	leaf	node
have	identical	class	labels,	then	the	node	is	not	expanded	any	further.	Each
leaf	node	is	assigned	a	class	label	that	occurs	most	frequently	in	the	training
instances	associated	with	the	node.

To	illustrate	how	the	algorithm	works,	consider	the	training	set	shown	in	Table
3.3 	for	the	loan	borrower	classification	problem.	Suppose	we	apply	Hunt's
algorithm	to	fit	the	training	data.	The	tree	initially	contains	only	a	single	leaf
node	as	shown	in	Figure	3.6(a) .	This	node	is	labeled	as	Defaulted	=	No,
since	the	majority	of	the	borrowers	did	not	default	on	their	loan	payments.	The
training	error	of	this	tree	is	30%	as	three	out	of	the	ten	training	instances	have

the	class	label	 .	The	leaf	node	can	therefore	be	further
expanded	because	it	contains	training	instances	from	more	than	one	class.

Figure	3.6.
Hunt's	algorithm	for	building	decision	trees.

Let	Home	Owner	be	the	attribute	chosen	to	split	the	training	instances.	The
justification	for	choosing	this	attribute	as	the	attribute	test	condition	will	be
discussed	later.	The	resulting	binary	split	on	the	Home	Owner	attribute	is
shown	in	Figure	3.6(b) .	All	the	training	instances	for	which	Home	Owner	=
Yes	are	propagated	to	the	left	child	of	the	root	node	and	the	rest	are
propagated	to	the	right	child.	Hunt's	algorithm	is	then	recursively	applied	to
each	child.	The	left	child	becomes	a	leaf	node	labeled	 ,	since

Defaulted	=	Yes

Defaulted	=	No

all	instances	associated	with	this	node	have	identical	class	label
.	The	right	child	has	instances	from	each	class	label.	Hence,

we	split	it	further.	The	resulting	subtrees	after	recursively	expanding	the	right
child	are	shown	in	Figures	3.6(c) 	and	(d) .

Hunt's	algorithm,	as	described	above,	makes	some	simplifying	assumptions
that	are	often	not	true	in	practice.	In	the	following,	we	describe	these
assumptions	and	briefly	discuss	some	of	the	possible	ways	for	handling	them.

1.	 Some	of	the	child	nodes	created	in	Hunt's	algorithm	can	be	empty	if
none	of	the	training	instances	have	the	particular	attribute	values.	One
way	to	handle	this	is	by	declaring	each	of	them	as	a	leaf	node	with	a
class	label	that	occurs	most	frequently	among	the	training	instances
associated	with	their	parent	nodes.

2.	 If	all	training	instances	associated	with	a	node	have	identical	attribute
values	but	different	class	labels,	it	is	not	possible	to	expand	this	node
any	further.	One	way	to	handle	this	case	is	to	declare	it	a	leaf	node	and
assign	it	the	class	label	that	occurs	most	frequently	in	the	training
instances	associated	with	this	node.

Design	Issues	of	Decision	Tree	Induction
Hunt's	algorithm	is	a	generic	procedure	for	growing	decision	trees	in	a	greedy
fashion.	To	implement	the	algorithm,	there	are	two	key	design	issues	that
must	be	addressed.

1.	 What	is	the	splitting	criterion?	At	each	recursive	step,	an	attribute
must	be	selected	to	partition	the	training	instances	associated	with	a
node	into	smaller	subsets	associated	with	its	child	nodes.	The	splitting
criterion	determines	which	attribute	is	chosen	as	the	test	condition	and

Defaulted	=	No

how	the	training	instances	should	be	distributed	to	the	child	nodes.	This
will	be	discussed	in	Sections	3.3.2 	and	3.3.3 .

2.	 What	is	the	stopping	criterion?	The	basic	algorithm	stops	expanding
a	node	only	when	all	the	training	instances	associated	with	the	node
have	the	same	class	labels	or	have	identical	attribute	values.	Although
these	conditions	are	sufficient,	there	are	reasons	to	stop	expanding	a
node	much	earlier	even	if	the	leaf	node	contains	training	instances	from
more	than	one	class.	This	process	is	called	early	termination	and	the
condition	used	to	determine	when	a	node	should	be	stopped	from
expanding	is	called	a	stopping	criterion.	The	advantages	of	early
termination	are	discussed	in	Section	3.4 .

3.3.2	Methods	for	Expressing	Attribute
Test	Conditions

Decision	tree	induction	algorithms	must	provide	a	method	for	expressing	an
attribute	test	condition	and	its	corresponding	outcomes	for	different	attribute
types.

Binary	Attributes

The	test	condition	for	a	binary	attribute	generates	two	potential	outcomes,	as
shown	in	Figure	3.7 .

Figure	3.7.
Attribute	test	condition	for	a	binary	attribute.

Nominal	Attributes

Since	a	nominal	attribute	can	have	many	values,	its	attribute	test	condition
can	be	expressed	in	two	ways,	as	a	multiway	split	or	a	binary	split	as	shown	in
Figure	3.8 .	For	a	multiway	split	(Figure	3.8(a)),	the	number	of	outcomes
depends	on	the	number	of	distinct	values	for	the	corresponding	attribute.	For
example,	if	an	attribute	such	as	marital	status	has	three	distinct	values—
single,	married,	or	divorced—its	test	condition	will	produce	a	three-way	split.	It
is	also	possible	to	create	a	binary	split	by	partitioning	all	values	taken	by	the
nominal	attribute	into	two	groups.	For	example,	some	decision	tree
algorithms,	such	as	CART,	produce	only	binary	splits	by	considering	all	

	ways	of	creating	a	binary	partition	of	k	attribute	values.	Figure	3.8(b)
illustrates	three	different	ways	of	grouping	the	attribute	values	for	marital
status	into	two	subsets.

2k
−1−1

Figure	3.8.
Attribute	test	conditions	for	nominal	attributes.

Ordinal	Attributes

Ordinal	attributes	can	also	produce	binary	or	multi-way	splits.	Ordinal	attribute
values	can	be	grouped	as	long	as	the	grouping	does	not	violate	the	order
property	of	the	attribute	values.	Figure	3.9 	illustrates	various	ways	of
splitting	training	records	based	on	the	Shirt	Size	attribute.	The	groupings
shown	in	Figures	3.9(a) 	and	(b) 	preserve	the	order	among	the	attribute
values,	whereas	the	grouping	shown	in	Figure	3.9(c) 	violates	this	property
because	it	combines	the	attribute	values	Small	and	Large	into	the	same
partition	while	Medium	and	Extra	Large	are	combined	into	another	partition.

Figure	3.9.
Different	ways	of	grouping	ordinal	attribute	values.

Continuous	Attributes

For	continuous	attributes,	the	attribute	test	condition	can	be	expressed	as	a
comparison	test	(e.g.,)	producing	a	binary	split,	or	as	a	range	query	of	the
form	 ,	for	 	producing	a	multiway	split.	The	difference
between	these	approaches	is	shown	in	Figure	3.10 .	For	the	binary	split,
any	possible	value	v	between	the	minimum	and	maximum	attribute	values	in
the	training	data	can	be	used	for	constructing	the	comparison	test	 .
However,	it	is	sufficient	to	only	consider	distinct	attribute	values	in	the	training
set	as	candidate	split	positions.	For	the	multiway	split,	any	possible	collection
of	attribute	value	ranges	can	be	used,	as	long	as	they	are	mutually	exclusive
and	cover	the	entire	range	of	attribute	values	between	the	minimum	and
maximum	values	observed	in	the	training	set.	One	approach	for	constructing
multiway	splits	is	to	apply	the	discretization	strategies	described	in	Section
2.3.6 	on	page	63.	After	discretization,	a	new	ordinal	value	is	assigned	to
each	discretized	interval,	and	the	attribute	test	condition	is	then	defined	using
this	newly	constructed	ordinal	attribute.

A<v
vi≤A<vi+1 i=1,	…,	k,

A<v

Figure	3.10.
Test	condition	for	continuous	attributes.

3.3.3	Measures	for	Selecting	an
Attribute	Test	Condition

There	are	many	measures	that	can	be	used	to	determine	the	goodness	of	an
attribute	test	condition.	These	measures	try	to	give	preference	to	attribute	test
conditions	that	partition	the	training	instances	into	purer	subsets	in	the	child
nodes,	which	mostly	have	the	same	class	labels.	Having	purer	nodes	is	useful
since	a	node	that	has	all	of	its	training	instances	from	the	same	class	does	not
need	to	be	expanded	further.	In	contrast,	an	impure	node	containing	training
instances	from	multiple	classes	is	likely	to	require	several	levels	of	node
expansions,	thereby	increasing	the	depth	of	the	tree	considerably.	Larger
trees	are	less	desirable	as	they	are	more	susceptible	to	model	overfitting,	a
condition	that	may	degrade	the	classification	performance	on	unseen
instances,	as	will	be	discussed	in	Section	3.4 .	They	are	also	difficult	to
interpret	and	incur	more	training	and	test	time	as	compared	to	smaller	trees.

In	the	following,	we	present	different	ways	of	measuring	the	impurity	of	a	node
and	the	collective	impurity	of	its	child	nodes,	both	of	which	will	be	used	to
identify	the	best	attribute	test	condition	for	a	node.

Impurity	Measure	for	a	Single	Node
The	impurity	of	a	node	measures	how	dissimilar	the	class	labels	are	for	the
data	instances	belonging	to	a	common	node.	Following	are	examples	of
measures	that	can	be	used	to	evaluate	the	impurity	of	a	node	t:

where	pi(t)	is	the	relative	frequency	of	training	instances	that	belong	to	class	i
at	node	t,	c	is	the	total	number	of	classes,	and	 	in	entropy
calculations.	All	three	measures	give	a	zero	impurity	value	if	a	node	contains
instances	from	a	single	class	and	maximum	impurity	if	the	node	has	equal
proportion	of	instances	from	multiple	classes.

Figure	3.11 	compares	the	relative	magnitude	of	the	impurity	measures
when	applied	to	binary	classification	problems.	Since	there	are	only	two
classes,	 .	The	horizontal	axis	p	refers	to	the	fraction	of	instances
that	belong	to	one	of	the	two	classes.	Observe	that	all	three	measures	attain
their	maximum	value	when	the	class	distribution	is	uniform	(i.e.,

)	and	minimum	value	when	all	the	instances	belong	to	a	single
class	(i.e.,	either	 	or	 	equals	to	1).	The	following	examples	illustrate
how	the	values	of	the	impurity	measures	vary	as	we	alter	the	class
distribution.

Entropy=−∑i=0c−1pi(t)	log2pi(t), (3.4)

Gini	index=1−∑i=0c−1pi(t)2, (3.5)

Classification	error=1−maxi[pi(t)], (3.6)

0	log2	0=0

p0(t)+p1(t)=1

p0(t)+p1(t)=0.5
p0(t) p1(t)

Figure	3.11.
Comparison	among	the	impurity	measures	for	binary	classification	problems.

Node	 Count

0

6

Node	 Count

1

5

Node	 Count

3

N1 Gini=1−(0/6)2−(6/6)2=0

Class=0 Entropy=−(0/6)	log2(0/6)−(6/6)	log2(6/6)=0

Class=1 Error=1−max[0/6,	6/6]=0

N2 Gini=1−(1/6)2−(5/6)2=0.278

Class=0 Entropy=−(1/6)	log2(1/6)−(5/6)	log2(5/6)=0.650

Class=1 Error=1−max[1/6,	5/6]=0.167

N3 Gini=1−(3/6)2−(3/6)2=0.5

Class=0 Entropy=−(3/6)	log2(3/6)−(3/6)	log2(3/6)=1

3

Based	on	these	calculations,	node	 	has	the	lowest	impurity	value,	followed
by	 	and	 .	This	example,	along	with	Figure	3.11 ,	shows	the
consistency	among	the	impurity	measures,	i.e.,	if	a	node	 	has	lower
entropy	than	node	 ,	then	the	Gini	index	and	error	rate	of	 	will	also	be
lower	than	that	of	 .	Despite	their	agreement,	the	attribute	chosen	as
splitting	criterion	by	the	impurity	measures	can	still	be	different	(see	Exercise
6	on	page	187).

Collective	Impurity	of	Child	Nodes
Consider	an	attribute	test	condition	that	splits	a	node	containing	N	training
instances	into	k	children,	 ,	where	every	child	node	represents	a
partition	of	the	data	resulting	from	one	of	the	k	outcomes	of	the	attribute	test
condition.	Let	 	be	the	number	of	training	instances	associated	with	a	child
node	 ,	whose	impurity	value	is	 .	Since	a	training	instance	in	the	parent
node	reaches	node	 	for	a	fraction	of	 	times,	the	collective	impurity	of
the	child	nodes	can	be	computed	by	taking	a	weighted	sum	of	the	impurities
of	the	child	nodes,	as	follows:

3.3.	Example	Weighted	Entropy
Consider	the	candidate	attribute	test	condition	shown	in	Figures	3.12(a)
and	(b) 	for	the	loan	borrower	classification	problem.	Splitting	on	the
Home	Owner	attribute	will	generate	two	child	nodes

Class=1 Error=1−max[6/6,	3/6]=0.5

N1
N2 N3

N1
N2 N1
N2

{v1,	v2,	⋯	,vk}

N(vj)
vj I(vj)

vj N(vj)/N

I(children)=∑j=1kN(vj)NI(vj), (3.7)

Figure	3.12.
Examples	of	candidate	attribute	test	conditions.

whose	weighted	entropy	can	be	calculated	as	follows:

Splitting	on	Marital	Status,	on	the	other	hand,	leads	to	three	child	nodes
with	a	weighted	entropy	given	by

Thus,	Marital	Status	has	a	lower	weighted	entropy	than	Home	Owner.

Identifying	the	best	attribute	test	condition
To	determine	the	goodness	of	an	attribute	test	condition,	we	need	to	compare
the	degree	of	impurity	of	the	parent	node	(before	splitting)	with	the	weighted
degree	of	impurity	of	the	child	nodes	(after	splitting).	The	larger	their

I(Home	Owner=yes)=03log203−33log233=0I(Home	Owner=no)=
−37log237−47log247=0.985I(Home	Owner=310×0+710×0.985=0.690

I(Marital	Status=Single)=
−25log225−35log235=0.971I(Marital	Status=Married)=
−03log203−33log233=0I(Marital	Status=Divorced)=
−12log212−12log212=1.000I(Marital	Status)=510×0.971+310×0+210×1=0.686

difference,	the	better	the	test	condition.	This	difference,	 ,	also	termed	as	the
gain	in	purity	of	an	attribute	test	condition,	can	be	defined	as	follows:

Figure	3.13.
Splitting	criteria	for	the	loan	borrower	classification	problem	using	Gini	index.

where	I(parent)	is	the	impurity	of	a	node	before	splitting	and	I(children)	is	the
weighted	impurity	measure	after	splitting.	It	can	be	shown	that	the	gain	is	non-
negative	since	 	for	any	reasonable	measure	such	as	those
presented	above.	The	higher	the	gain,	the	purer	are	the	classes	in	the	child
nodes	relative	to	the	parent	node.	The	splitting	criterion	in	the	decision	tree
learning	algorithm	selects	the	attribute	test	condition	that	shows	the	maximum
gain.	Note	that	maximizing	the	gain	at	a	given	node	is	equivalent	to
minimizing	the	weighted	impurity	measure	of	its	children	since	I(parent)	is	the
same	for	all	candidate	attribute	test	conditions.	Finally,	when	entropy	is	used

Δ

Δ=I(parent)−I(children), (3.8)

I(parent)≥I(children)

as	the	impurity	measure,	the	difference	in	entropy	is	commonly	known	as
information	gain,	 .

In	the	following,	we	present	illustrative	approaches	for	identifying	the	best
attribute	test	condition	given	qualitative	or	quantitative	attributes.

Splitting	of	Qualitative	Attributes
Consider	the	first	two	candidate	splits	shown	in	Figure	3.12 	involving
qualitative	attributes	 	and	 .	The	initial	class
distribution	at	the	parent	node	is	(0.3,	0.7),	since	there	are	3	instances	of
class	 	and	7	instances	of	class	 	in	the	training	data.	Thus,

The	information	gains	for	Home	Owner	and	Marital	Status	are	each	given	by

The	information	gain	for	Marital	Status	is	thus	higher	due	to	its	lower	weighted
entropy,	which	will	thus	be	considered	for	splitting.

Binary	Splitting	of	Qualitative	Attributes
Consider	building	a	decision	tree	using	only	binary	splits	and	the	Gini	index	as
the	impurity	measure.	Figure	3.13 	shows	examples	of	four	candidate
splitting	criteria	for	the	 	and	 	attributes.	Since	there
are	3	borrowers	in	the	training	set	who	defaulted	and	7	others	who	repaid	their
loan	(see	Table	in	Figure	3.13),	the	Gini	index	of	the	parent	node	before
splitting	is

Δinfo

I(parent)=−310log2310−710log2710=0.881

Δinfo(Home	Owner)=0.881−0.690=0.191Δinfo(Marital	Status)=0.881−0.686=0.195

If	 	is	chosen	as	the	splitting	attribute,	the	Gini	index	for	the	child
nodes	 	and	 	are	0	and	0.490,	respectively.	The	weighted	average	Gini
index	for	the	children	is

where	the	weights	represent	the	proportion	of	training	instances	assigned	to
each	child.	The	gain	using	 	as	splitting	attribute	is

.	Similarly,	we	can	apply	a	binary	split	on	the	
	attribute.	However,	since	 	is	a	nominal	attribute	with

three	outcomes,	there	are	three	possible	ways	to	group	the	attribute	values
into	a	binary	split.	The	weighted	average	Gini	index	of	the	children	for	each
candidate	binary	split	is	shown	in	Figure	3.13 .	Based	on	these	results,	

	and	the	last	binary	split	using	 	are	clearly	the	best
candidates,	since	they	both	produce	the	lowest	weighted	average	Gini	index.
Binary	splits	can	also	be	used	for	ordinal	attributes,	if	the	binary	partitioning	of
the	attribute	values	does	not	violate	the	ordering	property	of	the	values.

Binary	Splitting	of	Quantitative	Attributes
Consider	the	problem	of	identifying	the	best	binary	split	 	for
the	preceding	loan	approval	classification	problem.	As	discussed	previously,
even	though	 	can	take	any	value	between	the	minimum	and	maximum	values
of	annual	income	in	the	training	set,	it	is	sufficient	to	only	consider	the	annual
income	values	observed	in	the	training	set	as	candidate	split	positions.	For
each	candidate	 ,	the	training	set	is	scanned	once	to	count	the	number	of
borrowers	with	annual	income	less	than	or	greater	than	 	along	with	their	class
proportions.	We	can	then	compute	the	Gini	index	at	each	candidate	split

1−(310)2−(710)2=0.420.

N1 N2

(3/10)×0+(7/10)×0.490=0.343,

0.420−0.343=0.077

Annual	Income≤τ

τ

τ
τ

position	and	choose	the	 	that	produces	the	lowest	value.	Computing	the	Gini
index	at	each	candidate	split	position	requires	O(N)	operations,	where	N	is	the
number	of	training	instances.	Since	there	are	at	most	N	possible	candidates,
the	overall	complexity	of	this	brute-force	method	is	 .	It	is	possible	to
reduce	the	complexity	of	this	problem	to	O(N	log	N)	by	using	a	method
described	as	follows	(see	illustration	in	Figure	3.14).	In	this	method,	we
first	sort	the	training	instances	based	on	their	annual	income,	a	one-time	cost
that	requires	O(N	log	N)	operations.	The	candidate	split	positions	are	given	by
the	midpoints	between	every	two	adjacent	sorted	values:	$55,000,	$65,000,
$72,500,	and	so	on.	For	the	first	candidate,	since	none	of	the	instances	has
an	annual	income	less	than	or	equal	to	$55,000,	the	Gini	index	for	the	child
node	with	 	is	equal	to	zero.	In	contrast,	there	are	3
training	instances	of	class	 	and	 	instances	of	class	No	with	annual
income	greater	than	$55,000.	The	Gini	index	for	this	node	is	0.420.	The
weighted	average	Gini	index	for	the	first	candidate	split	position,	 ,	is
equal	to	 .

Figure	3.14.
Splitting	continuous	attributes.

For	the	next	candidate,	 ,	the	class	distribution	of	its	child	nodes	can
be	obtained	with	a	simple	update	of	the	distribution	for	the	previous	candidate.
This	is	because,	as	 	increases	from	$55,000	to	$65,000,	there	is	only	one

τ

O(N2)

Annual	Income<	$55,000

τ=$55,000
0×0+1×0.420=0.420

τ=$65,000

τ

training	instance	affected	by	the	change.	By	examining	the	class	label	of	the
affected	training	instance,	the	new	class	distribution	is	obtained.	For	example,
as	 	increases	to	$65,000,	there	is	only	one	borrower	in	the	training	set,	with
an	annual	income	of	$60,000,	affected	by	this	change.	Since	the	class	label
for	the	borrower	is	 ,	the	count	for	class	 	increases	from	0	to	1	(for

)	and	decreases	from	7	to	6	(for
),	as	shown	in	Figure	3.14 .	The	distribution	for	the

	class	remains	unaffected.	The	updated	Gini	index	for	this	candidate	split
position	is	0.400.

This	procedure	is	repeated	until	the	Gini	index	for	all	candidates	are	found.
The	best	split	position	corresponds	to	the	one	that	produces	the	lowest	Gini
index,	which	occurs	at	 .	Since	the	Gini	index	at	each	candidate	split
position	can	be	computed	in	O(1)	time,	the	complexity	of	finding	the	best	split
position	is	O(N)	once	all	the	values	are	kept	sorted,	a	one-time	operation	that
takes	O(N	log	N)	time.	The	overall	complexity	of	this	method	is	thus	O(N	log
N),	which	is	much	smaller	than	the	 	time	taken	by	the	brute-force
method.	The	amount	of	computation	can	be	further	reduced	by	considering
only	candidate	split	positions	located	between	two	adjacent	sorted	instances
with	different	class	labels.	For	example,	we	do	not	need	to	consider	candidate
split	positions	located	between	$60,000	and	$75,000	because	all	three
instances	with	annual	income	in	this	range	($60,000,	$70,000,	and	$75,000)
have	the	same	class	labels.	Choosing	a	split	position	within	this	range	only
increases	the	degree	of	impurity,	compared	to	a	split	position	located	outside
this	range.	Therefore,	the	candidate	split	positions	at	 	and

	can	be	ignored.	Similarly,	we	do	not	need	to	consider	the	candidate
split	positions	at	$87,500,	$92,500,	$110,000,	$122,500,	and	$172,500
because	they	are	located	between	two	adjacent	instances	with	the	same
labels.	This	strategy	reduces	the	number	of	candidate	split	positions	to
consider	from	9	to	2	(excluding	the	two	boundary	cases	 	and

).

τ

Annual	Income≤$65,000
Annual	Income>$65,000

τ=$97,500

O(N2)

τ=$65,000
τ=$72,500

τ=$55,000
τ=$230,000

Gain	Ratio
One	potential	limitation	of	impurity	measures	such	as	entropy	and	Gini	index
is	that	they	tend	to	favor	qualitative	attributes	with	large	number	of	distinct
values.	Figure	3.12 	shows	three	candidate	attributes	for	partitioning	the
data	set	given	in	Table	3.3 .	As	previously	mentioned,	the	attribute	

	is	a	better	choice	than	the	attribute	 ,	because	it	provides	a
larger	information	gain.	However,	if	we	compare	them	against	 ,
the	latter	produces	the	purest	partitions	with	the	maximum	information	gain,
since	the	weighted	entropy	and	Gini	index	is	equal	to	zero	for	its	children.	Yet,

	is	not	a	good	attribute	for	splitting	because	it	has	a	unique	value
for	each	instance.	Even	though	a	test	condition	involving	 	will
accurately	classify	every	instance	in	the	training	data,	we	cannot	use	such	a
test	condition	on	new	test	instances	with	 	values	that	haven't	been
seen	before	during	training.	This	example	suggests	having	a	low	impurity
value	alone	is	insufficient	to	find	a	good	attribute	test	condition	for	a	node.	As
we	will	see	later	in	Section	3.4 ,	having	more	number	of	child	nodes	can
make	a	decision	tree	more	complex	and	consequently	more	susceptible	to
overfitting.	Hence,	the	number	of	children	produced	by	the	splitting	attribute
should	also	be	taken	into	consideration	while	deciding	the	best	attribute	test
condition.

There	are	two	ways	to	overcome	this	problem.	One	way	is	to	generate	only
binary	decision	trees,	thus	avoiding	the	difficulty	of	handling	attributes	with
varying	number	of	partitions.	This	strategy	is	employed	by	decision	tree
classifiers	such	as	CART.	Another	way	is	to	modify	the	splitting	criterion	to
take	into	account	the	number	of	partitions	produced	by	the	attribute.	For
example,	in	the	C4.5	decision	tree	algorithm,	a	measure	known	as	gain	ratio
is	used	to	compensate	for	attributes	that	produce	a	large	number	of	child
nodes.	This	measure	is	computed	as	follows:

where	 	is	the	number	of	instances	assigned	to	node	 	and	k	is	the	total
number	of	splits.	The	split	information	measures	the	entropy	of	splitting	a
node	into	its	child	nodes	and	evaluates	if	the	split	results	in	a	larger	number	of
equally-sized	child	nodes	or	not.	For	example,	if	every	partition	has	the	same
number	of	instances,	then	 	and	the	split	information	would	be
equal	to	log 	k.	Thus,	if	an	attribute	produces	a	large	number	of	splits,	its	split
information	is	also	large,	which	in	turn,	reduces	the	gain	ratio.

3.4.	Example	Gain	Ratio
Consider	the	data	set	given	in	Exercise	2	on	page	185.	We	want	to	select
the	best	attribute	test	condition	among	the	following	three	attributes:

,	 ,	and	 .	The	entropy	before	splitting	is

If	 	is	used	as	attribute	test	condition:

If	 	is	used	as	attribute	test	condition:

Finally,	if	 	is	used	as	attribute	test	condition:

Gain	ratio=ΔinfoSplit	Info=Entropy(Parent)−∑i=1kN(vi)NEntropy(vi)
−∑i=1kN(vi)Nlog2N(vi)N

(3.9)

N(vi) vi

∀i:N(vi)/N=1/k
2

Entropy(parent)=−1020log21020−1020log21020=1.

Entropy(children)=1020[−610log2610−410log2410
]×2=0.971Gain	Ratio=1−0.971−1020log21020−1020log21020=0.0291=0.029

Entropy(children)=420[−14log214−34log234
]+820×0+820[−18log218−78log278
]=0.380Gain	Ratio=1−0.380−420log2420−820log2820−820log2820=0.6201.52

Thus,	even	though	 	has	the	highest	information	gain,	its	gain
ratio	is	lower	than	 	since	it	produces	a	larger	number	of	splits.

3.3.4	Algorithm	for	Decision	Tree
Induction

Algorithm	3.1 	presents	a	pseudocode	for	decision	tree	induction	algorithm.
The	input	to	this	algorithm	is	a	set	of	training	instances	E	along	with	the
attribute	set	F	.	The	algorithm	works	by	recursively	selecting	the	best	attribute
to	split	the	data	(Step	7)	and	expanding	the	nodes	of	the	tree	(Steps	11	and
12)	until	the	stopping	criterion	is	met	(Step	1).	The	details	of	this	algorithm	are
explained	below.

1.	 The	 	function	extends	the	decision	tree	by	creating	a	new
node.	A	node	in	the	decision	tree	either	has	a	test	condition,	denoted
as	node.test	cond,	or	a	class	label,	denoted	as	node.label.

2.	 The	 	function	determines	the	attribute	test	condition
for	partitioning	the	training	instances	associated	with	a	node.	The
splitting	attribute	chosen	depends	on	the	impurity	measure	used.	The
popular	measures	include	entropy	and	the	Gini	index.

3.	 The	 	function	determines	the	class	label	to	be	assigned	to	a
leaf	node.	For	each	leaf	node	t,	let	 	denote	the	fraction	of	training
instances	from	class	i	associated	with	the	node	t.	The	label	assigned	to

Entropy(children)=120[−11log211−01log201
]×20=0Gain	Ratio=1−0−120log2120×20=14.32=0.23

p(i|t)

the	leaf	node	is	typically	the	one	that	occurs	most	frequently	in	the
training	instances	that	are	associated	with	this	node.

Algorithm	3.1	A	skeleton	decision	tree
induction	algorithm.

∈

∈

where	the	argmax	operator	returns	the	class	i	that	maximizes	 .
Besides	providing	the	information	needed	to	determine	the	class	label

leaf.label=argmaxi	p(i|t), (3.10)

p(i|t)

of	a	leaf	node,	 	can	also	be	used	as	a	rough	estimate	of	the
probability	that	an	instance	assigned	to	the	leaf	node	t	belongs	to	class
i.	Sections	4.11.2 	and	4.11.4 	in	the	next	chapter	describe	how
such	probability	estimates	can	be	used	to	determine	the	performance
of	a	decision	tree	under	different	cost	functions.

4.	 The	 	function	is	used	to	terminate	the	tree-growing
process	by	checking	whether	all	the	instances	have	identical	class
label	or	attribute	values.	Since	decision	tree	classifiers	employ	a	top-
down,	recursive	partitioning	approach	for	building	a	model,	the	number
of	training	instances	associated	with	a	node	decreases	as	the	depth	of
the	tree	increases.	As	a	result,	a	leaf	node	may	contain	too	few	training
instances	to	make	a	statistically	significant	decision	about	its	class
label.	This	is	known	as	the	data	fragmentation	problem.	One	way	to
avoid	this	problem	is	to	disallow	splitting	of	a	node	when	the	number	of
instances	associated	with	the	node	fall	below	a	certain	threshold.	A
more	systematic	way	to	control	the	size	of	a	decision	tree	(number	of
leaf	nodes)	will	be	discussed	in	Section	3.5.4 .

3.3.5	Example	Application:	Web	Robot
Detection

Consider	the	task	of	distinguishing	the	access	patterns	of	web	robots	from
those	generated	by	human	users.	A	web	robot	(also	known	as	a	web	crawler)
is	a	software	program	that	automatically	retrieves	files	from	one	or	more
websites	by	following	the	hyperlinks	extracted	from	an	initial	set	of	seed
URLs.	These	programs	have	been	deployed	for	various	purposes,	from
gathering	web	pages	on	behalf	of	search	engines	to	more	malicious	activities
such	as	spamming	and	committing	click	frauds	in	online	advertisements.

p(i|t)

Figure	3.15.
Input	data	for	web	robot	detection.

The	web	robot	detection	problem	can	be	cast	as	a	binary	classification	task.
The	input	data	for	the	classification	task	is	a	web	server	log,	a	sample	of
which	is	shown	in	Figure	3.15(a) .	Each	line	in	the	log	file	corresponds	to	a
request	made	by	a	client	(i.e.,	a	human	user	or	a	web	robot)	to	the	web
server.	The	fields	recorded	in	the	web	log	include	the	client's	IP	address,
timestamp	of	the	request,	URL	of	the	requested	file,	size	of	the	file,	and	user
agent,	which	is	a	field	that	contains	identifying	information	about	the	client.

For	human	users,	the	user	agent	field	specifies	the	type	of	web	browser	or
mobile	device	used	to	fetch	the	files,	whereas	for	web	robots,	it	should
technically	contain	the	name	of	the	crawler	program.	However,	web	robots
may	conceal	their	true	identities	by	declaring	their	user	agent	fields	to	be
identical	to	known	browsers.	Therefore,	user	agent	is	not	a	reliable	field	to
detect	web	robots.

The	first	step	toward	building	a	classification	model	is	to	precisely	define	a
data	instance	and	associated	attributes.	A	simple	approach	is	to	consider
each	log	entry	as	a	data	instance	and	use	the	appropriate	fields	in	the	log	file
as	its	attribute	set.	This	approach,	however,	is	inadequate	for	several	reasons.
First,	many	of	the	attributes	are	nominal-valued	and	have	a	wide	range	of
domain	values.	For	example,	the	number	of	unique	client	IP	addresses,	URLs,
and	referrers	in	a	log	file	can	be	very	large.	These	attributes	are	undesirable
for	building	a	decision	tree	because	their	split	information	is	extremely	high
(see	Equation	(3.9)).	In	addition,	it	might	not	be	possible	to	classify	test
instances	containing	IP	addresses,	URLs,	or	referrers	that	are	not	present	in
the	training	data.	Finally,	by	considering	each	log	entry	as	a	separate	data
instance,	we	disregard	the	sequence	of	web	pages	retrieved	by	the	client—a
critical	piece	of	information	that	can	help	distinguish	web	robot	accesses	from
those	of	a	human	user.

A	better	alternative	is	to	consider	each	web	session	as	a	data	instance.	A	web
session	is	a	sequence	of	requests	made	by	a	client	during	a	given	visit	to	the
website.	Each	web	session	can	be	modeled	as	a	directed	graph,	in	which	the
nodes	correspond	to	web	pages	and	the	edges	correspond	to	hyperlinks
connecting	one	web	page	to	another.	Figure	3.15(b) 	shows	a	graphical
representation	of	the	first	web	session	given	in	the	log	file.	Every	web	session
can	be	characterized	using	some	meaningful	attributes	about	the	graph	that
contain	discriminatory	information.	Figure	3.15(c) 	shows	some	of	the
attributes	extracted	from	the	graph,	including	the	depth	and	breadth	of	its

corresponding	tree	rooted	at	the	entry	point	to	the	website.	For	example,	the
depth	and	breadth	of	the	tree	shown	in	Figure	3.15(b) 	are	both	equal	to
two.

The	derived	attributes	shown	in	Figure	3.15(c) 	are	more	informative	than
the	original	attributes	given	in	the	log	file	because	they	characterize	the
behavior	of	the	client	at	the	website.	Using	this	approach,	a	data	set
containing	2916	instances	was	created,	with	equal	numbers	of	sessions	due
to	web	robots	(class	1)	and	human	users	(class	0).	10%	of	the	data	were
reserved	for	training	while	the	remaining	90%	were	used	for	testing.	The
induced	decision	tree	is	shown	in	Figure	3.16 ,	which	has	an	error	rate
equal	to	3.8%	on	the	training	set	and	5.3%	on	the	test	set.	In	addition	to	its
low	error	rate,	the	tree	also	reveals	some	interesting	properties	that	can	help
discriminate	web	robots	from	human	users:

1.	 Accesses	by	web	robots	tend	to	be	broad	but	shallow,	whereas
accesses	by	human	users	tend	to	be	more	focused	(narrow	but	deep).

2.	 Web	robots	seldom	retrieve	the	image	pages	associated	with	a	web
page.

3.	 Sessions	due	to	web	robots	tend	to	be	long	and	contain	a	large	number
of	requested	pages.

4.	 Web	robots	are	more	likely	to	make	repeated	requests	for	the	same
web	page	than	human	users	since	the	web	pages	retrieved	by	human
users	are	often	cached	by	the	browser.

3.3.6	Characteristics	of	Decision	Tree
Classifiers

The	following	is	a	summary	of	the	important	characteristics	of	decision	tree
induction	algorithms.

1.	 Applicability:	Decision	trees	are	a	nonparametric	approach	for
building	classification	models.	This	approach	does	not	require	any	prior
assumption	about	the	probability	distribution	governing	the	class	and
attributes	of	the	data,	and	thus,	is	applicable	to	a	wide	variety	of	data
sets.	It	is	also	applicable	to	both	categorical	and	continuous	data
without	requiring	the	attributes	to	be	transformed	into	a	common
representation	via	binarization,	normalization,	or	standardization.
Unlike	some	binary	classifiers	described	in	Chapter	4 ,	it	can	also
deal	with	multiclass	problems	without	the	need	to	decompose	them	into
multiple	binary	classification	tasks.	Another	appealing	feature	of
decision	tree	classifiers	is	that	the	induced	trees,	especially	the	shorter
ones,	are	relatively	easy	to	interpret.	The	accuracies	of	the	trees	are
also	quite	comparable	to	other	classification	techniques	for	many
simple	data	sets.

2.	 Expressiveness:	A	decision	tree	provides	a	universal	representation
for	discrete-valued	functions.	In	other	words,	it	can	encode	any	function
of	discrete-valued	attributes.	This	is	because	every	discrete-valued
function	can	be	represented	as	an	assignment	table,	where	every
unique	combination	of	discrete	attributes	is	assigned	a	class	label.
Since	every	combination	of	attributes	can	be	represented	as	a	leaf	in
the	decision	tree,	we	can	always	find	a	decision	tree	whose	label
assignments	at	the	leaf	nodes	matches	with	the	assignment	table	of
the	original	function.	Decision	trees	can	also	help	in	providing	compact
representations	of	functions	when	some	of	the	unique	combinations	of
attributes	can	be	represented	by	the	same	leaf	node.	For	example,
Figure	3.17 	shows	the	assignment	table	of	the	Boolean	function

	involving	four	binary	attributes,	resulting	in	a	total	of
	possible	assignments.	The	tree	shown	in	Figure	3.17 	shows

(A∧B)∨(C∧D)
24=16

a	compressed	encoding	of	this	assignment	table.	Instead	of	requiring	a
fully-grown	tree	with	16	leaf	nodes,	it	is	possible	to	encode	the	function
using	a	simpler	tree	with	only	7	leaf	nodes.	Nevertheless,	not	all
decision	trees	for	discrete-valued	attributes	can	be	simplified.	One
notable	example	is	the	parity	function,	whose	value	is	1	when	there	is
an	even	number	of	true	values	among	its	Boolean	attributes,	and	0
otherwise.	Accurate	modeling	of	such	a	function	requires	a	full	decision
tree	with	 	nodes,	where	d	is	the	number	of	Boolean	attributes	(see
Exercise	1	on	page	185).

2d

Figure	3.16.
Decision	tree	model	for	web	robot	detection.

Figure	3.17.
Decision	tree	for	the	Boolean	function	 .

3.	 Computational	Efficiency:	Since	the	number	of	possible	decision
trees	can	be	very	large,	many	decision	tree	algorithms	employ	a
heuristic-based	approach	to	guide	their	search	in	the	vast	hypothesis
space.	For	example,	the	algorithm	presented	in	Section	3.3.4 	uses
a	greedy,	top-down,	recursive	partitioning	strategy	for	growing	a
decision	tree.	For	many	data	sets,	such	techniques	quickly	construct	a
reasonably	good	decision	tree	even	when	the	training	set	size	is	very
large.	Furthermore,	once	a	decision	tree	has	been	built,	classifying	a
test	record	is	extremely	fast,	with	a	worst-case	complexity	of	O(w),
where	w	is	the	maximum	depth	of	the	tree.

4.	 Handling	Missing	Values:	A	decision	tree	classifier	can	handle
missing	attribute	values	in	a	number	of	ways,	both	in	the	training	and
the	test	sets.	When	there	are	missing	values	in	the	test	set,	the
classifier	must	decide	which	branch	to	follow	if	the	value	of	a	splitting

(A∧B)∨(C∧D)

node	attribute	is	missing	for	a	given	test	instance.	One	approach,
known	as	the	probabilistic	split	method,	which	is	employed	by	the
C4.5	decision	tree	classifier,	distributes	the	data	instance	to	every	child
of	the	splitting	node	according	to	the	probability	that	the	missing
attribute	has	a	particular	value.	In	contrast,	the	CART	algorithm	uses
the	surrogate	split	method,	where	the	instance	whose	splitting
attribute	value	is	missing	is	assigned	to	one	of	the	child	nodes	based
on	the	value	of	another	non-missing	surrogate	attribute	whose	splits
most	resemble	the	partitions	made	by	the	missing	attribute.	Another
approach,	known	as	the	separate	class	method	is	used	by	the	CHAID
algorithm,	where	the	missing	value	is	treated	as	a	separate	categorical
value	distinct	from	other	values	of	the	splitting	attribute.	Figure	3.18
shows	an	example	of	the	three	different	ways	for	handling	missing
values	in	a	decision	tree	classifier.	Other	strategies	for	dealing	with
missing	values	are	based	on	data	preprocessing,	where	the	instance
with	missing	value	is	either	imputed	with	the	mode	(for	categorical
attribute)	or	mean	(for	continuous	attribute)	value	or	discarded	before
the	classifier	is	trained.

Figure	3.18.
Methods	for	handling	missing	attribute	values	in	decision	tree	classifier.

During	training,	if	an	attribute	v	has	missing	values	in	some	of	the
training	instances	associated	with	a	node,	we	need	a	way	to	measure
the	gain	in	purity	if	v	is	used	for	splitting.	One	simple	way	is	to	exclude
instances	with	missing	values	of	v	in	the	counting	of	instances
associated	with	every	child	node,	generated	for	every	possible
outcome	of	v.Further,	if	v	is	chosen	as	the	attribute	test	condition	at	a
node,	training	instances	with	missing	values	of	v	can	be	propagated	to
the	child	nodes	using	any	of	the	methods	described	above	for	handling
missing	values	in	test	instances.

5.	 Handling	Interactions	among	Attributes:	Attributes	are	considered
interacting	if	they	are	able	to	distinguish	between	classes	when	used
together,	but	individually	they	provide	little	or	no	information.	Due	to	the
greedy	nature	of	the	splitting	criteria	in	decision	trees,	such	attributes
could	be	passed	over	in	favor	of	other	attributes	that	are	not	as	useful.
This	could	result	in	more	complex	decision	trees	than	necessary.
Hence,	decision	trees	can	perform	poorly	when	there	are	interactions
among	attributes.
To	illustrate	this	point,	consider	the	three-dimensional	data	shown	in
Figure	3.19(a) ,	which	contains	2000	data	points	from	one	of	two
classes,	denoted	as	 	and	 	in	the	diagram.	Figure	3.19(b) 	shows
the	distribution	of	the	two	classes	in	the	two-dimensional	space
involving	attributes	X	and	Y	,	which	is	a	noisy	version	of	the	XOR
Boolean	function.	We	can	see	that	even	though	the	two	classes	are
well-separated	in	this	two-dimensional	space,	neither	of	the	two
attributes	contain	sufficient	information	to	distinguish	between	the	two
classes	when	used	alone.	For	example,	the	entropies	of	the	following
attribute	test	conditions:	 	and	 ,	are	close	to	1,	indicating	that
neither	X	nor	Y	provide	any	reduction	in	the	impurity	measure	when
used	individually.	X	and	Y	thus	represent	a	case	of	interaction	among
attributes.	The	data	set	also	contains	a	third	attribute,	Z,	in	which	both
classes	are	distributed	uniformly,	as	shown	in	Figures	3.19(c) 	and

+ ∘

X≤10 Y≤10

3.19(d) ,	and	hence,	the	entropy	of	any	split	involving	Z	is	close	to	1.
As	a	result,	Z	is	as	likely	to	be	chosen	for	splitting	as	the	interacting	but
useful	attributes,	X	and	Y	.	For	further	illustration	of	this	issue,	readers
are	referred	to	Example	3.7 	in	Section	3.4.1 	and	Exercise	7	at
the	end	of	this	chapter.

Figure	3.19.
Example	of	a	XOR	data	involving	X	and	Y	,	along	with	an	irrelevant
attribute	Z.

6.	 Handling	Irrelevant	Attributes:	An	attribute	is	irrelevant	if	it	is	not
useful	for	the	classification	task.	Since	irrelevant	attributes	are	poorly
associated	with	the	target	class	labels,	they	will	provide	little	or	no	gain
in	purity	and	thus	will	be	passed	over	by	other	more	relevant	features.
Hence,	the	presence	of	a	small	number	of	irrelevant	attributes	will	not
impact	the	decision	tree	construction	process.	However,	not	all
attributes	that	provide	little	to	no	gain	are	irrelevant	(see	Figure
3.19).	Hence,	if	the	classification	problem	is	complex	(e.g.,	involving
interactions	among	attributes)	and	there	are	a	large	number	of
irrelevant	attributes,	then	some	of	these	attributes	may	be	accidentally
chosen	during	the	tree-growing	process,	since	they	may	provide	a
better	gain	than	a	relevant	attribute	just	by	random	chance.	Feature
selection	techniques	can	help	to	improve	the	accuracy	of	decision	trees
by	eliminating	the	irrelevant	attributes	during	preprocessing.	We	will
investigate	the	issue	of	too	many	irrelevant	attributes	in	Section
3.4.1 .

7.	 Handling	Redundant	Attributes:	An	attribute	is	redundant	if	it	is
strongly	correlated	with	another	attribute	in	the	data.	Since	redundant
attributes	show	similar	gains	in	purity	if	they	are	selected	for	splitting,
only	one	of	them	will	be	selected	as	an	attribute	test	condition	in	the
decision	tree	algorithm.	Decision	trees	can	thus	handle	the	presence	of
redundant	attributes.

8.	 Using	Rectilinear	Splits:	The	test	conditions	described	so	far	in	this
chapter	involve	using	only	a	single	attribute	at	a	time.	As	a
consequence,	the	tree-growing	procedure	can	be	viewed	as	the
process	of	partitioning	the	attribute	space	into	disjoint	regions	until
each	region	contains	records	of	the	same	class.	The	border	between
two	neighboring	regions	of	different	classes	is	known	as	a	decision
boundary.	Figure	3.20 	shows	the	decision	tree	as	well	as	the
decision	boundary	for	a	binary	classification	problem.	Since	the	test
condition	involves	only	a	single	attribute,	the	decision	boundaries	are

rectilinear;	i.e.,	parallel	to	the	coordinate	axes.	This	limits	the
expressiveness	of	decision	trees	in	representing	decision	boundaries	of
data	sets	with	continuous	attributes.	Figure	3.21 	shows	a	two-
dimensional	data	set	involving	binary	classes	that	cannot	be	perfectly
classified	by	a	decision	tree	whose	attribute	test	conditions	are	defined
based	on	single	attributes.	The	binary	classes	in	the	data	set	are
generated	from	two	skewed	Gaussian	distributions,	centered	at	(8,8)
and	(12,12),	respectively.	The	true	decision	boundary	is	represented	by
the	diagonal	dashed	line,	whereas	the	rectilinear	decision	boundary
produced	by	the	decision	tree	classifier	is	shown	by	the	thick	solid	line.
In	contrast,	an	oblique	decision	tree	may	overcome	this	limitation	by
allowing	the	test	condition	to	be	specified	using	more	than	one
attribute.	For	example,	the	binary	classification	data	shown	in	Figure
3.21 	can	be	easily	represented	by	an	oblique	decision	tree	with	a
single	root	node	with	test	condition

Figure	3.20.

x+y<20.

Example	of	a	decision	tree	and	its	decision	boundaries	for	a	two-
dimensional	data	set.

Figure	3.21.
Example	of	data	set	that	cannot	be	partitioned	optimally	using	a
decision	tree	with	single	attribute	test	conditions.	The	true	decision
boundary	is	shown	by	the	dashed	line.

Although	an	oblique	decision	tree	is	more	expressive	and	can	produce
more	compact	trees,	finding	the	optimal	test	condition	is
computationally	more	expensive.

9.	 Choice	of	Impurity	Measure:	It	should	be	noted	that	the	choice	of
impurity	measure	often	has	little	effect	on	the	performance	of	decision
tree	classifiers	since	many	of	the	impurity	measures	are	quite
consistent	with	each	other,	as	shown	in	Figure	3.11 	on	page	129.
Instead,	the	strategy	used	to	prune	the	tree	has	a	greater	impact	on	the
final	tree	than	the	choice	of	impurity	measure.

3.4	Model	Overfitting
Methods	presented	so	far	try	to	learn	classification	models	that	show	the
lowest	error	on	the	training	set.	However,	as	we	will	show	in	the	following
example,	even	if	a	model	fits	well	over	the	training	data,	it	can	still	show	poor
generalization	performance,	a	phenomenon	known	as	model	overfitting.

Figure	3.22.
Examples	of	training	and	test	sets	of	a	two-dimensional	classification	problem.

Figure	3.23.
Effect	of	varying	tree	size	(number	of	leaf	nodes)	on	training	and	test	errors.

3.5.	Example	Overfitting	and	Underfitting	of
Decision	Trees
Consider	the	two-dimensional	data	set	shown	in	Figure	3.22(a) .	The
data	set	contains	instances	that	belong	to	two	separate	classes,
represented	as	 	and	 ,	respectively,	where	each	class	has	5400
instances.	All	instances	belonging	to	the	 	class	were	generated	from	a
uniform	distribution.	For	the	 	class,	5000	instances	were	generated	from
a	Gaussian	distribution	centered	at	(10,10)	with	unit	variance,	while	the
remaining	400	instances	were	sampled	from	the	same	uniform	distribution
as	the	 	class.	We	can	see	from	Figure	3.22(a) 	that	the	 	class	can	be
largely	distinguished	from	the	 	class	by	drawing	a	circle	of	appropriate
size	centered	at	(10,10).	To	learn	a	classifier	using	this	two-dimensional
data	set,	we	randomly	sampled	10%	of	the	data	for	training	and	used	the
remaining	90%	for	testing.	The	training	set,	shown	in	Figure	3.22(b) ,
looks	quite	representative	of	the	overall	data.	We	used	Gini	index	as	the

+ ∘
∘

+

∘ +
∘

impurity	measure	to	construct	decision	trees	of	increasing	sizes	(number	of
leaf	nodes),	by	recursively	expanding	a	node	into	child	nodes	till	every	leaf
node	was	pure,	as	described	in	Section	3.3.4 .

Figure	3.23(a) 	shows	changes	in	the	training	and	test	error	rates	as	the
size	of	the	tree	varies	from	1	to	8.	Both	error	rates	are	initially	large	when
the	tree	has	only	one	or	two	leaf	nodes.	This	situation	is	known	as	model
underfitting.	Underfitting	occurs	when	the	learned	decision	tree	is	too
simplistic,	and	thus,	incapable	of	fully	representing	the	true	relationship
between	the	attributes	and	the	class	labels.	As	we	increase	the	tree	size
from	1	to	8,	we	can	observe	two	effects.	First,	both	the	error	rates
decrease	since	larger	trees	are	able	to	represent	more	complex	decision
boundaries.	Second,	the	training	and	test	error	rates	are	quite	close	to
each	other,	which	indicates	that	the	performance	on	the	training	set	is	fairly
representative	of	the	generalization	performance.	As	we	further	increase
the	size	of	the	tree	from	8	to	150,	the	training	error	continues	to	steadily
decrease	till	it	eventually	reaches	zero,	as	shown	in	Figure	3.23(b) .
However,	in	a	striking	contrast,	the	test	error	rate	ceases	to	decrease	any
further	beyond	a	certain	tree	size,	and	then	it	begins	to	increase.	The
training	error	rate	thus	grossly	under-estimates	the	test	error	rate	once	the
tree	becomes	too	large.	Further,	the	gap	between	the	training	and	test
error	rates	keeps	on	widening	as	we	increase	the	tree	size.	This	behavior,
which	may	seem	counter-intuitive	at	first,	can	be	attributed	to	the
phenomena	of	model	overfitting.

3.4.1	Reasons	for	Model	Overfitting

Model	overfitting	is	the	phenomena	where,	in	the	pursuit	of	minimizing	the
training	error	rate,	an	overly	complex	model	is	selected	that	captures	specific

patterns	in	the	training	data	but	fails	to	learn	the	true	nature	of	relationships
between	attributes	and	class	labels	in	the	overall	data.	To	illustrate	this,
Figure	3.24 	shows	decision	trees	and	their	corresponding	decision
boundaries	(shaded	rectangles	represent	regions	assigned	to	the	 	class)	for
two	trees	of	sizes	5	and	50.	We	can	see	that	the	decision	tree	of	size	5
appears	quite	simple	and	its	decision	boundaries	provide	a	reasonable
approximation	to	the	ideal	decision	boundary,	which	in	this	case	corresponds
to	a	circle	centered	around	the	Gaussian	distribution	at	(10,	10).	Although	its
training	and	test	error	rates	are	non-zero,	they	are	very	close	to	each	other,
which	indicates	that	the	patterns	learned	in	the	training	set	should	generalize
well	over	the	test	set.	On	the	other	hand,	the	decision	tree	of	size	50	appears
much	more	complex	than	the	tree	of	size	5,	with	complicated	decision
boundaries.	For	example,	some	of	its	shaded	rectangles	(assigned	the	
class)	attempt	to	cover	narrow	regions	in	the	input	space	that	contain	only	one
or	two	 	training	instances.	Note	that	the	prevalence	of	 	instances	in	such
regions	is	highly	specific	to	the	training	set,	as	these	regions	are	mostly
dominated	by	-	instances	in	the	overall	data.	Hence,	in	an	attempt	to	perfectly
fit	the	training	data,	the	decision	tree	of	size	50	starts	fine	tuning	itself	to
specific	patterns	in	the	training	data,	leading	to	poor	performance	on	an
independently	chosen	test	set.

+

+

+ +

Figure	3.24.
Decision	trees	with	different	model	complexities.

Figure	3.25.
Performance	of	decision	trees	using	20%	data	for	training	(twice	the	original
training	size).

There	are	a	number	of	factors	that	influence	model	overfitting.	In	the	following,
we	provide	brief	descriptions	of	two	of	the	major	factors:	limited	training	size
and	high	model	complexity.	Though	they	are	not	exhaustive,	the	interplay
between	them	can	help	explain	most	of	the	common	model	overfitting
phenomena	in	real-world	applications.

Limited	Training	Size
Note	that	a	training	set	consisting	of	a	finite	number	of	instances	can	only
provide	a	limited	representation	of	the	overall	data.	Hence,	it	is	possible	that
the	patterns	learned	from	a	training	set	do	not	fully	represent	the	true	patterns
in	the	overall	data,	leading	to	model	overfitting.	In	general,	as	we	increase	the
size	of	a	training	set	(number	of	training	instances),	the	patterns	learned	from
the	training	set	start	resembling	the	true	patterns	in	the	overall	data.	Hence,

the	effect	of	overfitting	can	be	reduced	by	increasing	the	training	size,	as
illustrated	in	the	following	example.

3.6	Example	Effect	of	Training	Size
Suppose	that	we	use	twice	the	number	of	training	instances	than	what	we
had	used	in	the	experiments	conducted	in	Example	3.5 .	Specifically,	we
use	20%	data	for	training	and	use	the	remainder	for	testing.	Figure
3.25(b) 	shows	the	training	and	test	error	rates	as	the	size	of	the	tree	is
varied	from	1	to	150.	There	are	two	major	differences	in	the	trends	shown
in	this	figure	and	those	shown	in	Figure	3.23(b) 	(using	only	10%	of	the
data	for	training).	First,	even	though	the	training	error	rate	decreases	with
increasing	tree	size	in	both	figures,	its	rate	of	decrease	is	much	smaller
when	we	use	twice	the	training	size.	Second,	for	a	given	tree	size,	the	gap
between	the	training	and	test	error	rates	is	much	smaller	when	we	use
twice	the	training	size.	These	differences	suggest	that	the	patterns	learned
using	20%	of	data	for	training	are	more	generalizable	than	those	learned
using	10%	of	data	for	training.

Figure	3.25(a) 	shows	the	decision	boundaries	for	the	tree	of	size	50,
learned	using	20%	of	data	for	training.	In	contrast	to	the	tree	of	the	same
size	learned	using	10%	data	for	training	(see	Figure	3.24(d)),	we	can
see	that	the	decision	tree	is	not	capturing	specific	patterns	of	noisy	
instances	in	the	training	set.	Instead,	the	high	model	complexity	of	50	leaf
nodes	is	being	effectively	used	to	learn	the	boundaries	of	the	 	instances
centered	at	(10,	10).

High	Model	Complexity
Generally,	a	more	complex	model	has	a	better	ability	to	represent	complex
patterns	in	the	data.	For	example,	decision	trees	with	larger	number	of	leaf

+

+

nodes	can	represent	more	complex	decision	boundaries	than	decision	trees
with	fewer	leaf	nodes.	However,	an	overly	complex	model	also	has	a	tendency
to	learn	specific	patterns	in	the	training	set	that	do	not	generalize	well	over
unseen	instances.	Models	with	high	complexity	should	thus	be	judiciously
used	to	avoid	overfitting.

One	measure	of	model	complexity	is	the	number	of	“parameters”	that	need	to
be	inferred	from	the	training	set.	For	example,	in	the	case	of	decision	tree
induction,	the	attribute	test	conditions	at	internal	nodes	correspond	to	the
parameters	of	the	model	that	need	to	be	inferred	from	the	training	set.	A
decision	tree	with	larger	number	of	attribute	test	conditions	(and	consequently
more	leaf	nodes)	thus	involves	more	“parameters”	and	hence	is	more
complex.

Given	a	class	of	models	with	a	certain	number	of	parameters,	a	learning
algorithm	attempts	to	select	the	best	combination	of	parameter	values	that
maximizes	an	evaluation	metric	(e.g.,	accuracy)	over	the	training	set.	If	the
number	of	parameter	value	combinations	(and	hence	the	complexity)	is	large,
the	learning	algorithm	has	to	select	the	best	combination	from	a	large	number
of	possibilities,	using	a	limited	training	set.	In	such	cases,	there	is	a	high
chance	for	the	learning	algorithm	to	pick	a	spurious	combination	of
parameters	that	maximizes	the	evaluation	metric	just	by	random	chance.	This
is	similar	to	the	multiple	comparisons	problem	(also	referred	as	multiple
testing	problem)	in	statistics.

As	an	illustration	of	the	multiple	comparisons	problem,	consider	the	task	of
predicting	whether	the	stock	market	will	rise	or	fall	in	the	next	ten	trading	days.
If	a	stock	analyst	simply	makes	random	guesses,	the	probability	that	her
prediction	is	correct	on	any	trading	day	is	0.5.	However,	the	probability	that
she	will	predict	correctly	at	least	nine	out	of	ten	times	is

which	is	extremely	low.

Suppose	we	are	interested	in	choosing	an	investment	advisor	from	a	pool	of
200	stock	analysts.	Our	strategy	is	to	select	the	analyst	who	makes	the	most
number	of	correct	predictions	in	the	next	ten	trading	days.	The	flaw	in	this
strategy	is	that	even	if	all	the	analysts	make	their	predictions	in	a	random
fashion,	the	probability	that	at	least	one	of	them	makes	at	least	nine	correct
predictions	is

which	is	very	high.	Although	each	analyst	has	a	low	probability	of	predicting	at
least	nine	times	correctly,	considered	together,	we	have	a	high	probability	of
finding	at	least	one	analyst	who	can	do	so.	However,	there	is	no	guarantee	in
the	future	that	such	an	analyst	will	continue	to	make	accurate	predictions	by
random	guessing.

How	does	the	multiple	comparisons	problem	relate	to	model	overfitting?	In	the
context	of	learning	a	classification	model,	each	combination	of	parameter
values	corresponds	to	an	analyst,	while	the	number	of	training	instances
corresponds	to	the	number	of	days.	Analogous	to	the	task	of	selecting	the
best	analyst	who	makes	the	most	accurate	predictions	on	consecutive	days,
the	task	of	a	learning	algorithm	is	to	select	the	best	combination	of	parameters
that	results	in	the	highest	accuracy	on	the	training	set.	If	the	number	of
parameter	combinations	is	large	but	the	training	size	is	small,	it	is	highly	likely
for	the	learning	algorithm	to	choose	a	spurious	parameter	combination	that
provides	high	training	accuracy	just	by	random	chance.	In	the	following
example,	we	illustrate	the	phenomena	of	overfitting	due	to	multiple
comparisons	in	the	context	of	decision	tree	induction.

(109)+(1010)210=0.0107,

1−(1−0.0107)200=0.8847,

Figure	3.26.
Example	of	a	two-dimensional	(X-Y)	data	set.

Figure	3.27.

Training	and	test	error	rates	illustrating	the	effect	of	multiple	comparisons
problem	on	model	overfitting.

3.7.	Example	Multiple	Comparisons	and
Overfitting
Consider	the	two-dimensional	data	set	shown	in	Figure	3.26 	containing
500	 	and	500	 	instances,	which	is	similar	to	the	data	shown	in	Figure
3.19 .	In	this	data	set,	the	distributions	of	both	classes	are	well-separated
in	the	two-dimensional	(XY)	attribute	space,	but	none	of	the	two	attributes
(X	or	Y)	are	sufficiently	informative	to	be	used	alone	for	separating	the	two
classes.	Hence,	splitting	the	data	set	based	on	any	value	of	an	X	or	Y
attribute	will	provide	close	to	zero	reduction	in	an	impurity	measure.
However,	if	X	and	Y	attributes	are	used	together	in	the	splitting	criterion
(e.g.,	splitting	X	at	10	and	Y	at	10),	the	two	classes	can	be	effectively
separated.

+ ∘

Figure	3.28.
Decision	tree	with	6	leaf	nodes	using	X	and	Y	as	attributes.	Splits	have
been	numbered	from	1	to	5	in	order	of	other	occurrence	in	the	tree.

Figure	3.27(a) 	shows	the	training	and	test	error	rates	for	learning
decision	trees	of	varying	sizes,	when	30%	of	the	data	is	used	for	training
and	the	remainder	of	the	data	for	testing.	We	can	see	that	the	two	classes
can	be	separated	using	a	small	number	of	leaf	nodes.	Figure	3.28
shows	the	decision	boundaries	for	the	tree	with	six	leaf	nodes,	where	the
splits	have	been	numbered	according	to	their	order	of	appearance	in	the
tree.	Note	that	the	even	though	splits	1	and	3	provide	trivial	gains,	their
consequent	splits	(2,	4,	and	5)	provide	large	gains,	resulting	in	effective
discrimination	of	the	two	classes.

Assume	we	add	100	irrelevant	attributes	to	the	two-dimensional	X-Y	data.
Learning	a	decision	tree	from	this	resultant	data	will	be	challenging
because	the	number	of	candidate	attributes	to	choose	for	splitting	at	every
internal	node	will	increase	from	two	to	102.	With	such	a	large	number	of
candidate	attribute	test	conditions	to	choose	from,	it	is	quite	likely	that
spurious	attribute	test	conditions	will	be	selected	at	internal	nodes	because
of	the	multiple	comparisons	problem.	Figure	3.27(b) 	shows	the	training
and	test	error	rates	after	adding	100	irrelevant	attributes	to	the	training	set.
We	can	see	that	the	test	error	rate	remains	close	to	0.5	even	after	using	50
leaf	nodes,	while	the	training	error	rate	keeps	on	declining	and	eventually
becomes	0.

3.5	Model	Selection
There	are	many	possible	classification	models	with	varying	levels	of	model
complexity	that	can	be	used	to	capture	patterns	in	the	training	data.	Among
these	possibilities,	we	want	to	select	the	model	that	shows	lowest
generalization	error	rate.	The	process	of	selecting	a	model	with	the	right	level
of	complexity,	which	is	expected	to	generalize	well	over	unseen	test
instances,	is	known	as	model	selection.	As	described	in	the	previous
section,	the	training	error	rate	cannot	be	reliably	used	as	the	sole	criterion	for
model	selection.	In	the	following,	we	present	three	generic	approaches	to
estimate	the	generalization	performance	of	a	model	that	can	be	used	for
model	selection.	We	conclude	this	section	by	presenting	specific	strategies	for
using	these	approaches	in	the	context	of	decision	tree	induction.

3.5.1	Using	a	Validation	Set

Note	that	we	can	always	estimate	the	generalization	error	rate	of	a	model	by
using	“out-of-sample”	estimates,	i.e.	by	evaluating	the	model	on	a	separate
validation	set	that	is	not	used	for	training	the	model.	The	error	rate	on	the
validation	set,	termed	as	the	validation	error	rate,	is	a	better	indicator	of
generalization	performance	than	the	training	error	rate,	since	the	validation	set
has	not	been	used	for	training	the	model.	The	validation	error	rate	can	be
used	for	model	selection	as	follows.

Given	a	training	set	D.train,	we	can	partition	D.train	into	two	smaller	subsets,
D.tr	and	D.val,	such	that	D.tr	is	used	for	training	while	D.val	is	used	as	the
validation	set.	For	example,	two-thirds	of	D.train	can	be	reserved	as	D.tr	for

training,	while	the	remaining	one-third	is	used	as	D.val	for	computing
validation	error	rate.	For	any	choice	of	classification	model	m	that	is	trained	on
D.tr,	we	can	estimate	its	validation	error	rate	on	D.val,	 .	The	model
that	shows	the	lowest	value	of	 	can	then	be	selected	as	the	preferred
choice	of	model.

The	use	of	validation	set	provides	a	generic	approach	for	model	selection.
However,	one	limitation	of	this	approach	is	that	it	is	sensitive	to	the	sizes	of
D.tr	and	D.val,	obtained	by	partitioning	D.train.	If	the	size	of	D.tr	is	too	small,	it
may	result	in	the	learning	of	a	poor	classification	model	with	sub-standard
performance,	since	a	smaller	training	set	will	be	less	representative	of	the
overall	data.	On	the	other	hand,	if	the	size	of	D.val	is	too	small,	the	validation
error	rate	might	not	be	reliable	for	selecting	models,	as	it	would	be	computed
over	a	small	number	of	instances.

Figure	3.29.

errval(m)
errval(m)

Class	distribution	of	validation	data	for	the	two	decision	trees	shown	in	Figure
3.30 .

3.8.	Example	Validation	Error
In	the	following	example,	we	illustrate	one	possible	approach	for	using	a
validation	set	in	decision	tree	induction.	Figure	3.29 	shows	the
predicted	labels	at	the	leaf	nodes	of	the	decision	trees	generated	in	Figure
3.30 .	The	counts	given	beneath	the	leaf	nodes	represent	the	proportion
of	data	instances	in	the	validation	set	that	reach	each	of	the	nodes.	Based
on	the	predicted	labels	of	the	nodes,	the	validation	error	rate	for	the	left
tree	is	 ,	while	the	validation	error	rate	for	the	right
tree	is	 .	Based	on	their	validation	error	rates,	the	right
tree	is	preferred	over	the	left	one.

3.5.2	Incorporating	Model	Complexity

Since	the	chance	for	model	overfitting	increases	as	the	model	becomes	more
complex,	a	model	selection	approach	should	not	only	consider	the	training
error	rate	but	also	the	model	complexity.	This	strategy	is	inspired	by	a	well-
known	principle	known	as	Occam's	razor	or	the	principle	of	parsimony,
which	suggests	that	given	two	models	with	the	same	errors,	the	simpler	model
is	preferred	over	the	more	complex	model.	A	generic	approach	to	account	for
model	complexity	while	estimating	generalization	performance	is	formally
described	as	follows.

Given	a	training	set	D.train,	let	us	consider	learning	a	classification	model	m
that	belongs	to	a	certain	class	of	models,	 .	For	example,	if	 	represents	the
set	of	all	possible	decision	trees,	then	m	can	correspond	to	a	specific	decision

errval(TL)=6/16=0.375
errval(TR)=4/16=0.25

M M

tree	learned	from	the	training	set.	We	are	interested	in	estimating	the
generalization	error	rate	of	m,	gen.error(m).	As	discussed	previously,	the
training	error	rate	of	m,	train.error(m,	D.train),	can	under-estimate
gen.error(m)	when	the	model	complexity	is	high.	Hence,	we	represent
gen.error(m)	as	a	function	of	not	just	the	training	error	rate	but	also	the	model
complexity	of	 	as	follows:

where	 	is	a	hyper-parameter	that	strikes	a	balance	between	minimizing
training	error	and	reducing	model	complexity.	A	higher	value	of	 	gives	more
emphasis	to	the	model	complexity	in	the	estimation	of	generalization
performance.	To	choose	the	right	value	of	 ,	we	can	make	use	of	the
validation	set	in	a	similar	way	as	described	in	3.5.1 .	For	example,	we	can
iterate	through	a	range	of	values	of	 	and	for	every	possible	value,	we	can
learn	a	model	on	a	subset	of	the	training	set,	D.tr,	and	compute	its	validation
error	rate	on	a	separate	subset,	D.val.	We	can	then	select	the	value	of	 	that
provides	the	lowest	validation	error	rate.

Equation	3.11 	provides	one	possible	approach	for	incorporating	model
complexity	into	the	estimate	of	generalization	performance.	This	approach	is
at	the	heart	of	a	number	of	techniques	for	estimating	generalization
performance,	such	as	the	structural	risk	minimization	principle,	the	Akaike's
Information	Criterion	(AIC),	and	the	Bayesian	Information	Criterion	(BIC).	The
structural	risk	minimization	principle	serves	as	the	building	block	for	learning
support	vector	machines,	which	will	be	discussed	later	in	Chapter	4 .	For
more	details	on	AIC	and	BIC,	see	the	Bibliographic	Notes.

In	the	following,	we	present	two	different	approaches	for	estimating	the
complexity	of	a	model,	 .	While	the	former	is	specific	to	decision
trees,	the	latter	is	more	generic	and	can	be	used	with	any	class	of	models.

M,		complexity(M),

gen.error(m)=train.error(m,	D.train)+α×complexity(M), (3.11)

α
α

α

α

α

complexity(M)

Estimating	the	Complexity	of	Decision	Trees
In	the	context	of	decision	trees,	the	complexity	of	a	decision	tree	can	be
estimated	as	the	ratio	of	the	number	of	leaf	nodes	to	the	number	of	training
instances.	Let	k	be	the	number	of	leaf	nodes	and	 	be	the	number	of
training	instances.	The	complexity	of	a	decision	tree	can	then	be	described	as

.	This	reflects	the	intuition	that	for	a	larger	training	size,	we	can	learn	a
decision	tree	with	larger	number	of	leaf	nodes	without	it	becoming	overly
complex.	The	generalization	error	rate	of	a	decision	tree	T	can	then	be
computed	using	Equation	3.11 	as	follows:

where	err(T)	is	the	training	error	of	the	decision	tree	and	 	is	a	hyper-
parameter	that	makes	a	trade-off	between	reducing	training	error	and
minimizing	model	complexity,	similar	to	the	use	of	 	in	Equation	3.11 .	
can	be	viewed	as	the	relative	cost	of	adding	a	leaf	node	relative	to	incurring	a
training	error.	In	the	literature	on	decision	tree	induction,	the	above	approach
for	estimating	generalization	error	rate	is	also	termed	as	the	pessimistic
error	estimate.	It	is	called	pessimistic	as	it	assumes	the	generalization	error
rate	to	be	worse	than	the	training	error	rate	(by	adding	a	penalty	term	for
model	complexity).	On	the	other	hand,	simply	using	the	training	error	rate	as
an	estimate	of	the	generalization	error	rate	is	called	the	optimistic	error
estimate	or	the	resubstitution	estimate.

3.9.	Example	Generalization	Error	Estimates
Consider	the	two	binary	decision	trees,	 	and	 ,	shown	in	Figure
3.30 .	Both	trees	are	generated	from	the	same	training	data	and	 	is
generated	by	expanding	three	leaf	nodes	of	 .	The	counts	shown	in	the
leaf	nodes	of	the	trees	represent	the	class	distribution	of	the	training

Ntrain

k/Ntrain

errgen(T)=err(T)+Ω×kNtrain,

Ω

α Ω

TL TR
TL

TR

instances.	If	each	leaf	node	is	labeled	according	to	the	majority	class	of
training	instances	that	reach	the	node,	the	training	error	rate	for	the	left
tree	will	be	 ,	while	the	training	error	rate	for	the	right
tree	will	be	 .	Based	on	their	training	error	rates	alone,
	would	preferred	over	 ,	even	though	 	is	more	complex	(contains

larger	number	of	leaf	nodes)	than	 .

Figure	3.30.
Example	of	two	decision	trees	generated	from	the	same	training	data.

Now,	assume	that	the	cost	associated	with	each	leaf	node	is	 .	Then,
the	generalization	error	estimate	for	 	will	be

and	the	generalization	error	estimate	for	 	will	be

err(TL)=4/24=0.167
err(TR)=6/24=0.25

TL TR TL
TR

Ω=0.5
TL

errgen(TL)=424+0.5×724=7.524=0.3125

TR

errgen(TR)	=624+0.5×424=824=0.3333.

Since	 	has	a	lower	generalization	error	rate,	it	will	still	be	preferred	over
.	Note	that	 	implies	that	a	node	should	always	be	expanded	into

its	two	child	nodes	if	it	improves	the	prediction	of	at	least	one	training
instance,	since	expanding	a	node	is	less	costly	than	misclassifying	a
training	instance.	On	the	other	hand,	if	 ,	then	the	generalization	error
rate	for	 	is	 	and	for	 	is

.	In	this	case,	 	will	be	preferred	over	
because	it	has	a	lower	generalization	error	rate.	This	example	illustrates
that	different	choices	of	 	can	change	our	preference	of	decision	trees
based	on	their	generalization	error	estimates.	However,	for	a	given	choice
of	 ,	the	pessimistic	error	estimate	provides	an	approach	for	modeling	the
generalization	performance	on	unseen	test	instances.	The	value	of	 	can
be	selected	with	the	help	of	a	validation	set.

Minimum	Description	Length	Principle
Another	way	to	incorporate	model	complexity	is	based	on	an	information-
theoretic	approach	known	as	the	minimum	description	length	or	MDL
principle.	To	illustrate	this	approach,	consider	the	example	shown	in	Figure
3.31 .	In	this	example,	both	person	 	and	person	 	are	given	a	set	of
instances	with	known	attribute	values	 .	Assume	person	A	knows	the	class
label	y	for	every	instance,	while	person	 	has	no	such	information.	 	would
like	to	share	the	class	information	with	 	by	sending	a	message	containing
the	labels.	The	message	would	contain	 	bits	of	information,	where	N	is
the	number	of	instances.

TL
TR Ω=0.5

Ω=1
TL errgen(TL)=11/24=0.458 TR

errgen(TR)=10/24=0.417 TR TL

Ω

Ω
Ω

Θ(N)

Figure	3.31.
An	illustration	of	the	minimum	description	length	principle.

Alternatively,	instead	of	sending	the	class	labels	explicitly,	 	can	build	a
classification	model	from	the	instances	and	transmit	it	to	 .	 	can	then	apply
the	model	to	determine	the	class	labels	of	the	instances.	If	the	model	is	100%
accurate,	then	the	cost	for	transmission	is	equal	to	the	number	of	bits	required
to	encode	the	model.	Otherwise,	 	must	also	transmit	information	about
which	instances	are	misclassified	by	the	model	so	that	 	can	reproduce	the
same	class	labels.	Thus,	the	overall	transmission	cost,	which	is	equal	to	the
total	description	length	of	the	message,	is

where	the	first	term	on	the	right-hand	side	is	the	number	of	bits	needed	to
encode	the	misclassified	instances,	while	the	second	term	is	the	number	of
bits	required	to	encode	the	model.	There	is	also	a	hyper-parameter	 	that
trades-off	the	relative	costs	of	the	misclassified	instances	and	the	model.

Cost(model,	data)=Cost(data|model)+α×Cost(model), (3.12)

α

Notice	the	familiarity	between	this	equation	and	the	generic	equation	for
generalization	error	rate	presented	in	Equation	3.11 .	A	good	model	must
have	a	total	description	length	less	than	the	number	of	bits	required	to	encode
the	entire	sequence	of	class	labels.	Furthermore,	given	two	competing
models,	the	model	with	lower	total	description	length	is	preferred.	An	example
showing	how	to	compute	the	total	description	length	of	a	decision	tree	is	given
in	Exercise	10	on	page	189.

3.5.3	Estimating	Statistical	Bounds

Instead	of	using	Equation	3.11 	to	estimate	the	generalization	error	rate	of	a
model,	an	alternative	way	is	to	apply	a	statistical	correction	to	the	training
error	rate	of	the	model	that	is	indicative	of	its	model	complexity.	This	can	be
done	if	the	probability	distribution	of	training	error	is	available	or	can	be
assumed.	For	example,	the	number	of	errors	committed	by	a	leaf	node	in	a
decision	tree	can	be	assumed	to	follow	a	binomial	distribution.	We	can	thus
compute	an	upper	bound	limit	to	the	observed	training	error	rate	that	can	be
used	for	model	selection,	as	illustrated	in	the	following	example.

3.10.	Example	Statistical	Bounds	on	Training
Error
Consider	the	left-most	branch	of	the	binary	decision	trees	shown	in	Figure
3.30 .	Observe	that	the	left-most	leaf	node	of	 	has	been	expanded
into	two	child	nodes	in	 .	Before	splitting,	the	training	error	rate	of	the
node	is	 .	By	approximating	a	binomial	distribution	with	a	normal
distribution,	the	following	upper	bound	of	the	training	error	rate	e	can	be
derived:

TR
TL

2/7=0.286

where	 	is	the	confidence	level,	 	is	the	standardized	value	from	a
standard	normal	distribution,	and	N	is	the	total	number	of	training
instances	used	to	compute	e.	By	replacing	 	and	 ,	the
upper	bound	for	the	error	rate	is	 ,	which
corresponds	to	 	errors.	If	we	expand	the	node	into	its	child
nodes	as	shown	in	 ,	the	training	error	rates	for	the	child	nodes	are

	and	 ,	respectively.	Using	Equation	(3.13) ,	the
upper	bounds	of	these	error	rates	are	 	and

,	respectively.	The	overall	training	error	of	the
child	nodes	is	 ,	which	is	larger	than	the	estimated
error	for	the	corresponding	node	in	 ,	suggesting	that	it	should	not	be
split.

3.5.4	Model	Selection	for	Decision
Trees

Building	on	the	generic	approaches	presented	above,	we	present	two
commonly	used	model	selection	strategies	for	decision	tree	induction.

Prepruning	(Early	Stopping	Rule)

In	this	approach,	the	tree-growing	algorithm	is	halted	before	generating	a	fully
grown	tree	that	perfectly	fits	the	entire	training	data.	To	do	this,	a	more
restrictive	stopping	condition	must	be	used;	e.g.,	stop	expanding	a	leaf	node
when	the	observed	gain	in	the	generalization	error	estimate	falls	below	a
certain	threshold.	This	estimate	of	the	generalization	error	rate	can	be

eupper(N,	e,	α)=e+zα/222N+zα/2e(1−e)N+zα/224N21+zα/22N, (3.13)

α zα/2

α=25%,N=7, e=2/7
eupper(7,	2/7,	0.25)=0.503

7×0.503=3.521
TL

1/4=0.250 1/3=0.333
eupper(4,	1/4,0.25)=0.537

eupper(3,	1/3,	0.25)=0.650
4×0.537+3×0.650=4.098

TR

computed	using	any	of	the	approaches	presented	in	the	preceding	three
subsections,	e.g.,	by	using	pessimistic	error	estimates,	by	using	validation
error	estimates,	or	by	using	statistical	bounds.	The	advantage	of	prepruning	is
that	it	avoids	the	computations	associated	with	generating	overly	complex
subtrees	that	overfit	the	training	data.	However,	one	major	drawback	of	this
method	is	that,	even	if	no	significant	gain	is	obtained	using	one	of	the	existing
splitting	criterion,	subsequent	splitting	may	result	in	better	subtrees.	Such
subtrees	would	not	be	reached	if	prepruning	is	used	because	of	the	greedy
nature	of	decision	tree	induction.

Post-pruning

In	this	approach,	the	decision	tree	is	initially	grown	to	its	maximum	size.	This
is	followed	by	a	tree-pruning	step,	which	proceeds	to	trim	the	fully	grown	tree
in	a	bottom-up	fashion.	Trimming	can	be	done	by	replacing	a	subtree	with	(1)
a	new	leaf	node	whose	class	label	is	determined	from	the	majority	class	of
instances	affiliated	with	the	subtree	(approach	known	as	subtree
replacement),	or	(2)	the	most	frequently	used	branch	of	the	subtree
(approach	known	as	subtree	raising).	The	tree-pruning	step	terminates	when
no	further	improvement	in	the	generalization	error	estimate	is	observed
beyond	a	certain	threshold.	Again,	the	estimates	of	generalization	error	rate
can	be	computed	using	any	of	the	approaches	presented	in	the	previous	three
subsections.	Post-pruning	tends	to	give	better	results	than	prepruning
because	it	makes	pruning	decisions	based	on	a	fully	grown	tree,	unlike
prepruning,	which	can	suffer	from	premature	termination	of	the	tree-growing
process.	However,	for	post-pruning,	the	additional	computations	needed	to
grow	the	full	tree	may	be	wasted	when	the	subtree	is	pruned.

Figure	3.32 	illustrates	the	simplified	decision	tree	model	for	the	web	robot
detection	example	given	in	Section	3.3.5 .	Notice	that	the	subtree	rooted	at

	has	been	replaced	by	one	of	its	branches	corresponding	todepth=1

,	and	 ,	using	subtree	raising.	On	the	other	hand,
the	subtree	corresponding	to	 	and	 	has	been	replaced	by
a	leaf	node	assigned	to	class	0,	using	subtree	replacement.	The	subtree	for

	and	 	remains	intact.

Figure	3.32.
Post-pruning	of	the	decision	tree	for	web	robot	detection.

breadth<=7,	width>3 MultiP=1
depth>1 MultiAgent=0

depth>1 MultiAgent=1

3.6	Model	Evaluation
The	previous	section	discussed	several	approaches	for	model	selection	that
can	be	used	to	learn	a	classification	model	from	a	training	set	D.train.	Here	we
discuss	methods	for	estimating	its	generalization	performance,	i.e.	its
performance	on	unseen	instances	outside	of	D.train.	This	process	is	known	as
model	evaluation.

Note	that	model	selection	approaches	discussed	in	Section	3.5 	also
compute	an	estimate	of	the	generalization	performance	using	the	training	set
D.train.	However,	these	estimates	are	biased	indicators	of	the	performance	on
unseen	instances,	since	they	were	used	to	guide	the	selection	of	classification
model.	For	example,	if	we	use	the	validation	error	rate	for	model	selection	(as
described	in	Section	3.5.1),	the	resulting	model	would	be	deliberately
chosen	to	minimize	the	errors	on	the	validation	set.	The	validation	error	rate
may	thus	under-estimate	the	true	generalization	error	rate,	and	hence	cannot
be	reliably	used	for	model	evaluation.

A	correct	approach	for	model	evaluation	would	be	to	assess	the	performance
of	a	learned	model	on	a	labeled	test	set	has	not	been	used	at	any	stage	of
model	selection.	This	can	be	achieved	by	partitioning	the	entire	set	of	labeled
instances	D,	into	two	disjoint	subsets,	D.train,	which	is	used	for	model
selection	and	D.test,	which	is	used	for	computing	the	test	error	rate,	 .	In
the	following,	we	present	two	different	approaches	for	partitioning	D	into
D.train	and	D.test,	and	computing	the	test	error	rate,	 .

3.6.1	Holdout	Method

errtest

errtest

The	most	basic	technique	for	partitioning	a	labeled	data	set	is	the	holdout
method,	where	the	labeled	set	D	is	randomly	partitioned	into	two	disjoint	sets,
called	the	training	set	D.train	and	the	test	set	D.test.	A	classification	model	is
then	induced	from	D.train	using	the	model	selection	approaches	presented	in
Section	3.5 ,	and	its	error	rate	on	D.test,	 ,	is	used	as	an	estimate	of
the	generalization	error	rate.	The	proportion	of	data	reserved	for	training	and
for	testing	is	typically	at	the	discretion	of	the	analysts,	e.g.,	two-thirds	for
training	and	one-third	for	testing.

Similar	to	the	trade-off	faced	while	partitioning	D.train	into	D.tr	and	D.val	in
Section	3.5.1 ,	choosing	the	right	fraction	of	labeled	data	to	be	used	for
training	and	testing	is	non-trivial.	If	the	size	of	D.train	is	small,	the	learned
classification	model	may	be	improperly	learned	using	an	insufficient	number	of
training	instances,	resulting	in	a	biased	estimation	of	generalization
performance.	On	the	other	hand,	if	the	size	of	D.test	is	small,	 	may	be
less	reliable	as	it	would	be	computed	over	a	small	number	of	test	instances.
Moreover,	 	can	have	a	high	variance	as	we	change	the	random
partitioning	of	D	into	D.train	and	D.test.

The	holdout	method	can	be	repeated	several	times	to	obtain	a	distribution	of
the	test	error	rates,	an	approach	known	as	random	subsampling	or	repeated
holdout	method.	This	method	produces	a	distribution	of	the	error	rates	that
can	be	used	to	understand	the	variance	of	 .

3.6.2	Cross-Validation

Cross-validation	is	a	widely-used	model	evaluation	method	that	aims	to	make
effective	use	of	all	labeled	instances	in	D	for	both	training	and	testing.	To
illustrate	this	method,	suppose	that	we	are	given	a	labeled	set	that	we	have

errtest

errtest

errtest

errtest

randomly	partitioned	into	three	equal-sized	subsets,	 ,	and	 ,	as
shown	in	Figure	3.33 .	For	the	first	run,	we	train	a	model	using	subsets	
and	S (shown	as	empty	blocks)	and	test	the	model	on	subset	 .	The	test
error	rate	on	 ,	denoted	as	 ,	is	thus	computed	in	the	first	run.
Similarly,	for	the	second	run,	we	use	 	and	 	as	the	training	set	and	 	as
the	test	set,	to	compute	the	test	error	rate,	 ,	on	 .	Finally,	we	use	
and	 	for	training	in	the	third	run,	while	 	is	used	for	testing,	thus	resulting
in	the	test	error	rate	 	for	 .	The	overall	test	error	rate	is	obtained	by
summing	up	the	number	of	errors	committed	in	each	test	subset	across	all
runs	and	dividing	it	by	the	total	number	of	instances.	This	approach	is	called
three-fold	cross-validation.

Figure	3.33.
Example	demonstrating	the	technique	of	3-fold	cross-validation.

The	k-fold	cross-validation	method	generalizes	this	approach	by	segmenting
the	labeled	data	D	(of	size	N)	into	k	equal-sized	partitions	(or	folds).	During
the	i 	run,	one	of	the	partitions	of	D	is	chosen	as	D.test(i)	for	testing,	while	the
rest	of	the	partitions	are	used	as	D.train(i)	for	training.	A	model	m(i)	is	learned
using	D.train(i)	and	applied	on	D.test(i)	to	obtain	the	sum	of	test	errors,

S1,	S2 S3
S2

3	 S1
S1 err(S1)

S1 S3 S2
err(S2) S2 S1

S3 S3
err(S3) S3

th

.	This	procedure	is	repeated	k	times.	The	total	test	error	rate,	 ,
is	then	computed	as

Every	instance	in	the	data	is	thus	used	for	testing	exactly	once	and	for	training
exactly	 	times.	Also,	every	run	uses	 	fraction	of	the	data	for
training	and	1/k	fraction	for	testing.

The	right	choice	of	k	in	k-fold	cross-validation	depends	on	a	number	of
characteristics	of	the	problem.	A	small	value	of	k	will	result	in	a	smaller
training	set	at	every	run,	which	will	result	in	a	larger	estimate	of	generalization
error	rate	than	what	is	expected	of	a	model	trained	over	the	entire	labeled	set.
On	the	other	hand,	a	high	value	of	k	results	in	a	larger	training	set	at	every
run,	which	reduces	the	bias	in	the	estimate	of	generalization	error	rate.	In	the
extreme	case,	when	 ,	every	run	uses	exactly	one	data	instance	for	testing
and	the	remainder	of	the	data	for	testing.	This	special	case	of	k-fold	cross-
validation	is	called	the	leave-one-out	approach.	This	approach	has	the
advantage	of	utilizing	as	much	data	as	possible	for	training.	However,	leave-
one-out	can	produce	quite	misleading	results	in	some	special	scenarios,	as
illustrated	in	Exercise	11.	Furthermore,	leave-one-out	can	be	computationally
expensive	for	large	data	sets	as	the	cross-validation	procedure	needs	to	be
repeated	N	times.	For	most	practical	applications,	the	choice	of	k	between	5
and	10	provides	a	reasonable	approach	for	estimating	the	generalization	error
rate,	because	each	fold	is	able	to	make	use	of	80%	to	90%	of	the	labeled	data
for	training.

The	k-fold	cross-validation	method,	as	described	above,	produces	a	single
estimate	of	the	generalization	error	rate,	without	providing	any	information
about	the	variance	of	the	estimate.	To	obtain	this	information,	we	can	run	k-
fold	cross-validation	for	every	possible	partitioning	of	the	data	into	k	partitions,

errsum(i) errtest

errtest=∑i=1kerrsum(i)N. (3.14)

(k−1) (k−1)/k

k=N

and	obtain	a	distribution	of	test	error	rates	computed	for	every	such
partitioning.	The	average	test	error	rate	across	all	possible	partitionings
serves	as	a	more	robust	estimate	of	generalization	error	rate.	This	approach
of	estimating	the	generalization	error	rate	and	its	variance	is	known	as	the
complete	cross-validation	approach.	Even	though	such	an	estimate	is	quite
robust,	it	is	usually	too	expensive	to	consider	all	possible	partitionings	of	a
large	data	set	into	k	partitions.	A	more	practical	solution	is	to	repeat	the	cross-
validation	approach	multiple	times,	using	a	different	random	partitioning	of	the
data	into	k	partitions	at	every	time,	and	use	the	average	test	error	rate	as	the
estimate	of	generalization	error	rate.	Note	that	since	there	is	only	one	possible
partitioning	for	the	leave-one-out	approach,	it	is	not	possible	to	estimate	the
variance	of	generalization	error	rate,	which	is	another	limitation	of	this	method.

The	k-fold	cross-validation	does	not	guarantee	that	the	fraction	of	positive	and
negative	instances	in	every	partition	of	the	data	is	equal	to	the	fraction
observed	in	the	overall	data.	A	simple	solution	to	this	problem	is	to	perform	a
stratified	sampling	of	the	positive	and	negative	instances	into	k	partitions,	an
approach	called	stratified	cross-validation.

In	k-fold	cross-validation,	a	different	model	is	learned	at	every	run	and	the
performance	of	every	one	of	the	k	models	on	their	respective	test	folds	is	then
aggregated	to	compute	the	overall	test	error	rate,	 .	Hence,	 	does
not	reflect	the	generalization	error	rate	of	any	of	the	k	models.	Instead,	it
reflects	the	expected	generalization	error	rate	of	the	model	selection
approach,	when	applied	on	a	training	set	of	the	same	size	as	one	of	the
training	folds	 .	This	is	different	than	the	 	computed	in	the
holdout	method,	which	exactly	corresponds	to	the	specific	model	learned	over
D.train.	Hence,	although	effectively	utilizing	every	data	instance	in	D	for
training	and	testing,	the	 	computed	in	the	cross-validation	method	does
not	represent	the	performance	of	a	single	model	learned	over	a	specific
D.train.

errtest errtest

(N(k−1)/k) errtest

errtest

Nonetheless,	in	practice,	 	is	typically	used	as	an	estimate	of	the
generalization	error	of	a	model	built	on	D.	One	motivation	for	this	is	that	when
the	size	of	the	training	folds	is	closer	to	the	size	of	the	overall	data	(when	k	is
large),	then	 	resembles	the	expected	performance	of	a	model	learned
over	a	data	set	of	the	same	size	as	D.	For	example,	when	k	is	10,	every
training	fold	is	90%	of	the	overall	data.	The	 	then	should	approach	the
expected	performance	of	a	model	learned	over	90%	of	the	overall	data,	which
will	be	close	to	the	expected	performance	of	a	model	learned	over	D.

errtest

errtest

errtest

3.7	Presence	of	Hyper-parameters
Hyper-parameters	are	parameters	of	learning	algorithms	that	need	to	be
determined	before	learning	the	classification	model.	For	instance,	consider	the
hyper-parameter	 	that	appeared	in	Equation	3.11 ,	which	is	repeated	here
for	convenience.	This	equation	was	used	for	estimating	the	generalization
error	for	a	model	selection	approach	that	used	an	explicit	representations	of
model	complexity.	(See	Section	3.5.2 .)

For	other	examples	of	hyper-parameters,	see	Chapter	4 .

Unlike	regular	model	parameters,	such	as	the	test	conditions	in	the	internal
nodes	of	a	decision	tree,	hyper-parameters	such	as	 	do	not	appear	in	the
final	classification	model	that	is	used	to	classify	unlabeled	instances.
However,	the	values	of	hyper-parameters	need	to	be	determined	during	model
selection—a	process	known	as	hyper-parameter	selection—and	must	be
taken	into	account	during	model	evaluation.	Fortunately,	both	tasks	can	be
effectively	accomplished	via	slight	modifications	of	the	cross-validation
approach	described	in	the	previous	section.

3.7.1	Hyper-parameter	Selection

In	Section	3.5.2 ,	a	validation	set	was	used	to	select	 	and	this	approach	is
generally	applicable	for	hyper-parameter	section.	Let	p	be	the	hyper-
parameter	that	needs	to	be	selected	from	a	finite	range	of	values,	

α

gen.error(m)=train.error(m,	D.train)+α×complexity(M)

α

α

P=

.	Partition	D.train	into	D.tr	and	D.val.	For	every	choice	of	hyper-
parameter	value	 ,	we	can	learn	a	model	 	on	D.tr,	and	apply	this	model	on
D.val	to	obtain	the	validation	error	rate	 .	Let	 	be	the	hyper-
parameter	value	that	provides	the	lowest	validation	error	rate.	We	can	then
use	the	model	 	corresponding	to	 	as	the	final	choice	of	classification
model.

The	above	approach,	although	useful,	uses	only	a	subset	of	the	data,	D.train,
for	training	and	a	subset,	D.val,	for	validation.	The	framework	of	cross-
validation,	presented	in	Section	3.6.2 ,	addresses	both	of	those	issues,
albeit	in	the	context	of	model	evaluation.	Here	we	indicate	how	to	use	a	cross-
validation	approach	for	hyper-parameter	selection.	To	illustrate	this	approach,
let	us	partition	D.train	into	three	folds	as	shown	in	Figure	3.34 .	At	every
run,	one	of	the	folds	is	used	as	D.val	for	validation,	and	the	remaining	two
folds	are	used	as	D.tr	for	learning	a	model,	for	every	choice	of	hyper-
parameter	value	 .	The	overall	validation	error	rate	corresponding	to	each	
is	computed	by	summing	the	errors	across	all	the	three	folds.	We	then	select
the	hyper-parameter	value	 	that	provides	the	lowest	validation	error	rate,
and	use	it	to	learn	a	model	 	on	the	entire	training	set	D.train.

Figure	3.34.
Example	demonstrating	the	3-fold	cross-validation	framework	for	hyper-
parameter	selection	using	D.train.

{p1,	p2,	…	pn	}
pi mi

errval(pi) p*

m* p*

pi pi

p*
m*

Algorithm	3.2 	generalizes	the	above	approach	using	a	k-fold	cross-
validation	framework	for	hyper-parameter	selection.	At	the	i 	run	of	cross-
validation,	the	data	in	the	i 	fold	is	used	as	D.val(i)	for	validation	(Step	4),
while	the	remainder	of	the	data	in	D.train	is	used	as	D.tr(i)	for	training	(Step
5).	Then	for	every	choice	of	hyper-parameter	value	 ,	a	model	is	learned	on
D.tr(i)	(Step	7),	which	is	applied	on	D.val(i)	to	compute	its	validation	error
(Step	8).	This	is	used	to	compute	the	validation	error	rate	corresponding	to
models	learning	using	 	over	all	the	folds	(Step	11).	The	hyper-parameter
value	 	that	provides	the	lowest	validation	error	rate	(Step	12)	is	now	used	to
learn	the	final	model	 	on	the	entire	training	set	D.train	(Step	13).	Hence,	at
the	end	of	this	algorithm,	we	obtain	the	best	choice	of	the	hyper-parameter
value	as	well	as	the	final	classification	model	(Step	14),	both	of	which	are
obtained	by	making	an	effective	use	of	every	data	instance	in	D.train.

Algorithm	3.2	Procedure	model-select(k,	 ,
D.train)

∈

th

th

pi

pi
p*

m*

P

∑

3.7.2	Nested	Cross-Validation

The	approach	of	the	previous	section	provides	a	way	to	effectively	use	all	the
instances	in	D.train	to	learn	a	classification	model	when	hyper-parameter
selection	is	required.	This	approach	can	be	applied	over	the	entire	data	set	D
to	learn	the	final	classification	model.	However,	applying	Algorithm	3.2 	on
D	would	only	return	the	final	classification	model	 	but	not	an	estimate	of	its
generalization	performance,	 .	Recall	that	the	validation	error	rates	used
in	Algorithm	3.2 	cannot	be	used	as	estimates	of	generalization
performance,	since	they	are	used	to	guide	the	selection	of	the	final	model	 .
However,	to	compute	 ,	we	can	again	use	a	cross-validation	framework
for	evaluating	the	performance	on	the	entire	data	set	D,	as	described
originally	in	Section	3.6.2 .	In	this	approach,	D	is	partitioned	into	D.train	(for
training)	and	D.test	(for	testing)	at	every	run	of	cross-validation.	When	hyper-
parameters	are	involved,	we	can	use	Algorithm	3.2 	to	train	a	model	using
D.train	at	every	run,	thus	“internally”	using	cross-validation	for	model
selection.	This	approach	is	called	nested	cross-validation	or	double	cross-
validation.	Algorithm	3.3	describes	the	complete	approach	for	estimating

	using	nested	cross-validation	in	the	presence	of	hyper-parameters.

As	an	illustration	of	this	approach,	see	Figure	3.35 	where	the	labeled	set	D
is	partitioned	into	D.train	and	D.test,	using	a	3-fold	cross-validation	method.

m*
errtest

m*
errtest

errtest

Figure	3.35.
Example	demonstrating	3-fold	nested	cross-validation	for	computing	 .

At	the	i 	run	of	this	method,	one	of	the	folds	is	used	as	the	test	set,	D.test(i),
while	the	remaining	two	folds	are	used	as	the	training	set,	D.train(i).	This	is
represented	in	Figure	3.35 	as	the	i 	“outer”	run.	In	order	to	select	a	model
using	D.train(i),	we	again	use	an	“inner”	3-fold	cross-validation	framework	that
partitions	D.train(i)	into	D.tr	and	D.val	at	every	one	of	the	three	inner	runs
(iterations).	As	described	in	Section	3.7 ,	we	can	use	the	inner	cross-
validation	framework	to	select	the	best	hyper-parameter	value	 	as	well	as
its	resulting	classification	model	 	learned	over	D.train(i).	We	can	then
apply	 	on	D.test(i)	to	obtain	the	test	error	at	the	i 	outer	run.	By	repeating
this	process	for	every	outer	run,	we	can	compute	the	average	test	error	rate,

,	over	the	entire	labeled	set	D.	Note	that	in	the	above	approach,	the
inner	cross-validation	framework	is	being	used	for	model	selection	while	the
outer	cross-validation	framework	is	being	used	for	model	evaluation.

Algorithm	3.3	The	nested	cross-validation
approach	for	computing	 .

errtest

th

th

p*(i)
m*(i)

m*(i) th

errtest

errtest

∑

3.8	Pitfalls	of	Model	Selection	and
Evaluation
Model	selection	and	evaluation,	when	used	effectively,	serve	as	excellent
tools	for	learning	classification	models	and	assessing	their	generalization
performance.	However,	when	using	them	effectively	in	practical	settings,	there
are	several	pitfalls	that	can	result	in	improper	and	often	misleading
conclusions.	Some	of	these	pitfalls	are	simple	to	understand	and	easy	to
avoid,	while	others	are	quite	subtle	in	nature	and	difficult	to	catch.	In	the
following,	we	present	two	of	these	pitfalls	and	discuss	best	practices	to	avoid
them.

3.8.1	Overlap	between	Training	and
Test	Sets

One	of	the	basic	requirements	of	a	clean	model	selection	and	evaluation
setup	is	that	the	data	used	for	model	selection	(D.train)	must	be	kept	separate
from	the	data	used	for	model	evaluation	(D.test).	If	there	is	any	overlap
between	the	two,	the	test	error	rate	 	computed	over	D.test	cannot	be
considered	representative	of	the	performance	on	unseen	instances.
Comparing	the	effectiveness	of	classification	models	using	 	can	then	be
quite	misleading,	as	an	overly	complex	model	can	show	an	inaccurately	low
value	of	 	due	to	model	overfitting	(see	Exercise	12	at	the	end	of	this
chapter).

errtest

errtest

errtest

To	illustrate	the	importance	of	ensuring	no	overlap	between	D.train	and	D.test,
consider	a	labeled	data	set	where	all	the	attributes	are	irrelevant,	i.e.	they
have	no	relationship	with	the	class	labels.	Using	such	attributes,	we	should
expect	no	classification	model	to	perform	better	than	random	guessing.
However,	if	the	test	set	involves	even	a	small	number	of	data	instances	that
were	used	for	training,	there	is	a	possibility	for	an	overly	complex	model	to
show	better	performance	than	random,	even	though	the	attributes	are
completely	irrelevant.	As	we	will	see	later	in	Chapter	10 ,	this	scenario	can
actually	be	used	as	a	criterion	to	detect	overfitting	due	to	improper	setup	of
experiment.	If	a	model	shows	better	performance	than	a	random	classifier
even	when	the	attributes	are	irrelevant,	it	is	an	indication	of	a	potential
feedback	between	the	training	and	test	sets.

3.8.2	Use	of	Validation	Error	as
Generalization	Error

The	validation	error	rate	 	serves	an	important	role	during	model
selection,	as	it	provides	“out-of-sample”	error	estimates	of	models	on	D.val,
which	is	not	used	for	training	the	models.	Hence,	 	serves	as	a	better
metric	than	the	training	error	rate	for	selecting	models	and	hyper-parameter
values,	as	described	in	Sections	3.5.1 	and	3.7 ,	respectively.	However,
once	the	validation	set	has	been	used	for	selecting	a	classification	model

	no	longer	reflects	the	performance	of	 	on	unseen	instances.

To	realize	the	pitfall	in	using	validation	error	rate	as	an	estimate	of
generalization	performance,	consider	the	problem	of	selecting	a	hyper-
parameter	value	p	from	a	range	of	values	 	using	a	validation	set	D.val.	If	the
number	of	possible	values	in	 	is	quite	large	and	the	size	of	D.val	is	small,	it	is

errval

errval

m*,	errval m*

P,
P

possible	to	select	a	hyper-parameter	value	 	that	shows	favorable
performance	on	D.val	just	by	random	chance.	Notice	the	similarity	of	this
problem	with	the	multiple	comparisons	problem	discussed	in	Section	3.4.1 .
Even	though	the	classification	model	 	learned	using	 	would	show	a	low
validation	error	rate,	it	would	lack	generalizability	on	unseen	test	instances.

The	correct	approach	for	estimating	the	generalization	error	rate	of	a	model
	is	to	use	an	independently	chosen	test	set	D.test	that	hasn't	been	used	in

any	way	to	influence	the	selection	of	 .	As	a	rule	of	thumb,	the	test	set
should	never	be	examined	during	model	selection,	to	ensure	the	absence	of
any	form	of	overfitting.	If	the	insights	gained	from	any	portion	of	a	labeled	data
set	help	in	improving	the	classification	model	even	in	an	indirect	way,	then	that
portion	of	data	must	be	discarded	during	testing.

p*

m* p*

m*
m*

3.9	Model	Comparison
One	difficulty	when	comparing	the	performance	of	different	classification
models	is	whether	the	observed	difference	in	their	performance	is	statistically
significant.	For	example,	consider	a	pair	of	classification	models,	 	and	 .
Suppose	 	achieves	85%	accuracy	when	evaluated	on	a	test	set	containing
30	instances,	while	 	achieves	75%	accuracy	on	a	different	test	set
containing	5000	instances.	Based	on	this	information,	is	 	a	better	model
than	 ?	This	example	raises	two	key	questions	regarding	the	statistical
significance	of	a	performance	metric:

1.	 Although	 	has	a	higher	accuracy	than	 ,	it	was	tested	on	a	smaller
test	set.	How	much	confidence	do	we	have	that	the	accuracy	for	 	is
actually	85%?

2.	 Is	it	possible	to	explain	the	difference	in	accuracies	between	 	and
	as	a	result	of	variations	in	the	composition	of	their	test	sets?

The	first	question	relates	to	the	issue	of	estimating	the	confidence	interval	of
model	accuracy.	The	second	question	relates	to	the	issue	of	testing	the
statistical	significance	of	the	observed	deviation.	These	issues	are
investigated	in	the	remainder	of	this	section.

3.9.1	Estimating	the	Confidence
Interval	for	Accuracy

*

MA MB
MA

MB
MA

MB

MA MB
MA

MA
MB

To	determine	its	confidence	interval,	we	need	to	establish	the	probability
distribution	for	sample	accuracy.	This	section	describes	an	approach	for
deriving	the	confidence	interval	by	modeling	the	classification	task	as	a
binomial	random	experiment.	The	following	describes	characteristics	of	such
an	experiment:

1.	 The	random	experiment	consists	of	N	independent	trials,	where	each
trial	has	two	possible	outcomes:	success	or	failure.

2.	 The	probability	of	success,	p,	in	each	trial	is	constant.

An	example	of	a	binomial	experiment	is	counting	the	number	of	heads	that
turn	up	when	a	coin	is	flipped	N	times.	If	X	is	the	number	of	successes
observed	in	N	trials,	then	the	probability	that	X	takes	a	particular	value	is
given	by	a	binomial	distribution	with	mean	 	and	variance	 :

For	example,	if	the	coin	is	fair	 	and	is	flipped	fifty	times,	then	the
probability	that	the	head	shows	up	20	times	is

If	the	experiment	is	repeated	many	times,	then	the	average	number	of	heads
expected	to	show	up	is	 	while	its	variance	is	

The	task	of	predicting	the	class	labels	of	test	instances	can	also	be
considered	as	a	binomial	experiment.	Given	a	test	set	that	contains	N
instances,	let	X	be	the	number	of	instances	correctly	predicted	by	a	model
and	p	be	the	true	accuracy	of	the	model.	If	the	prediction	task	is	modeled	as	a
binomial	experiment,	then	X	has	a	binomial	distribution	with	mean	 	and
variance	 	It	can	be	shown	that	the	empirical	accuracy,	 	also

Np Np(1−p)

P(X=υ)=(Nυ)pυ(1−p)N−υ.

(p=0.5)

P(X=20)=(5020)0.520(1−0.5)30=0.0419.

50×0.5=25, 50×0.5×0.5=12.5.

Np
Np(1−p). acc=X/N,

has	a	binomial	distribution	with	mean	p	and	variance	 	(see	Exercise
14).	The	binomial	distribution	can	be	approximated	by	a	normal	distribution
when	N	is	sufficiently	large.	Based	on	the	normal	distribution,	the	confidence
interval	for	acc	can	be	derived	as	follows:

where	 	and	 	are	the	upper	and	lower	bounds	obtained	from	a
standard	normal	distribution	at	confidence	level	 	Since	a	standard
normal	distribution	is	symmetric	around	 	it	follows	that	
Rearranging	this	inequality	leads	to	the	following	confidence	interval	for	p:

The	following	table	shows	the	values	of	 	at	different	confidence	levels:

0.99 0.98 0.95 0.9 0.8 0.7 0.5

2.58 2.33 1.96 1.65 1.28 1.04 0.67

3.11.	Example	Confidence	Interval	for	Accuracy
Consider	a	model	that	has	an	accuracy	of	80%	when	evaluated	on	100
test	instances.	What	is	the	confidence	interval	for	its	true	accuracy	at	a
95%	confidence	level?	The	confidence	level	of	95%	corresponds	to

	according	to	the	table	given	above.	Inserting	this	term	into
Equation	3.16 	yields	a	confidence	interval	between	71.1%	and	86.7%.
The	following	table	shows	the	confidence	interval	when	the	number	of
instances,	N,	increases:

N 20 50 100 500 1000 5000

p(1−p)/N

P(−Zα/2≤acc−pp(1−p)/N≤Z1−α/2)=1−α, (3.15)

Zα/2 Z1−α/2
(1−α).

Z=0, Zα/2=Z1−α/2.

2×N×acc×Zα/22±Zα/2Zα/22+4Nacc−4Nacc22(N+Zα/22). (3.16)

Zα/2

1−α

Zα/2

Za/2=1.96

Confidence 0.584 0.670 0.711 0.763 0.774 0.789

Interval

Note	that	the	confidence	interval	becomes	tighter	when	N	increases.

3.9.2	Comparing	the	Performance	of
Two	Models

Consider	a	pair	of	models,	 	and	 	which	are	evaluated	on	two
independent	test	sets,	 	and	 	Let	 	denote	the	number	of	instances	in

	and	 	denote	the	number	of	instances	in	 	In	addition,	suppose	the
error	rate	for	 	on	 	is	 	and	the	error	rate	for	 	on	 	is	 	Our	goal	is
to	test	whether	the	observed	difference	between	 	and	 	is	statistically
significant.

Assuming	that	 	and	 	are	sufficiently	large,	the	error	rates	 	and	 	can
be	approximated	using	normal	distributions.	If	the	observed	difference	in	the
error	rate	is	denoted	as	 	then	d	is	also	normally	distributed	with
mean	 ,	its	true	difference,	and	variance,	 	The	variance	of	d	can	be
computed	as	follows:

where	 	and	 	are	the	variances	of	the	error	rates.
Finally,	at	the	 	confidence	level,	it	can	be	shown	that	the	confidence
interval	for	the	true	difference	dt	is	given	by	the	following	equation:

−0.919 −0.888 −0.867 −0.833 −0.824 −0.811

M1 M2,
D1 D2. n1

D1 n2 D2.
M1 D1 e1 M2 D2 e2.

e1 e2

n1 n2 e1 e2

d=e1−e2,
dt σd2.

σd2≃σ^d2=e1(1−e1)n1+e2(1−e2)n2, (3.17)

e1(1−e1)/n1 e2(1−e1)/n2
(1−α)%

3.12.	Example	Significance	Testing
Consider	the	problem	described	at	the	beginning	of	this	section.	Model	
has	an	error	rate	of	 	when	applied	to	 	test	instances,	while
model	 	has	an	error	rate	of	 	when	applied	to	 	test
instances.	The	observed	difference	in	their	error	rates	is

.	In	this	example,	we	are	performing	a	two-sided	test	to
check	whether	 	or	 .	The	estimated	variance	of	the	observed
difference	in	error	rates	can	be	computed	as	follows:

or	 .	Inserting	this	value	into	Equation	3.18 ,	we	obtain	the
following	confidence	interval	for	 	at	95%	confidence	level:

As	the	interval	spans	the	value	zero,	we	can	conclude	that	the	observed
difference	is	not	statistically	significant	at	a	95%	confidence	level.

At	what	confidence	level	can	we	reject	the	hypothesis	that	 ?	To	do	this,
we	need	to	determine	the	value	of	 	such	that	the	confidence	interval	for	
does	not	span	the	value	zero.	We	can	reverse	the	preceding	computation	and
look	for	the	value	 	such	that	 .	Replacing	the	values	of	d	and

	gives	 .	This	value	first	occurs	when	 	(for	a	two-
sided	test).	The	result	suggests	that	the	null	hypothesis	can	be	rejected	at
confidence	level	of	93.6%	or	lower.

dt=d±zα/2σ^d. (3.18)

MA
e1=0.15 N1=30

MB e2=0.25 N2=5000

d=|0.15−0.25|=0.1
dt=0 dt≠0

σ^d2=0.15(1−0.15)30+0.25(1−0.25)5000=0.0043

σ^d=0.0655
dt

dt=0.1±1.96×0.0655=0.1±0.128.

dt=0
Zα/2 dt

Zα/2 d>Zσ/2σ^d
σ^d Zσ/2<1.527 (1−α)<~0.936

