
2	Data

This	chapter	discusses	several	data-related	issues	that
are	important	for	successful	data	mining:

The	Type	of	Data	Data	sets	differ	in	a	number	of	ways.	For	example,	the
attributes	used	to	describe	data	objects	can	be	of	different	types—quantitative
or	qualitative—and	data	sets	often	have	special	characteristics;	e.g.,	some
data	sets	contain	time	series	or	objects	with	explicit	relationships	to	one
another.	Not	surprisingly,	the	type	of	data	determines	which	tools	and
techniques	can	be	used	to	analyze	the	data.	Indeed,	new	research	in	data
mining	is	often	driven	by	the	need	to	accommodate	new	application	areas	and
their	new	types	of	data.

The	Quality	of	the	Data	Data	is	often	far	from	perfect.	While	most	data
mining	techniques	can	tolerate	some	level	of	imperfection	in	the	data,	a	focus
on	understanding	and	improving	data	quality	typically	improves	the	quality	of
the	resulting	analysis.	Data	quality	issues	that	often	need	to	be	addressed
include	the	presence	of	noise	and	outliers;	missing,	inconsistent,	or	duplicate
data;	and	data	that	is	biased	or,	in	some	other	way,	unrepresentative	of	the
phenomenon	or	population	that	the	data	is	supposed	to	describe.

Preprocessing	Steps	to	Make	the	Data	More	Suitable	for	Data	Mining
Often,	the	raw	data	must	be	processed	in	order	to	make	it	suitable	for

analysis.	While	one	objective	may	be	to	improve	data	quality,	other	goals
focus	on	modifying	the	data	so	that	it	better	fits	a	specified	data	mining
technique	or	tool.	For	example,	a	continuous	attribute,	e.g.,	length,	sometimes
needs	to	be	transformed	into	an	attribute	with	discrete	categories,	e.g.,	short,
medium,	or	long,	in	order	to	apply	a	particular	technique.	As	another	example,
the	number	of	attributes	in	a	data	set	is	often	reduced	because	many
techniques	are	more	effective	when	the	data	has	a	relatively	small	number	of
attributes.

Analyzing	Data	in	Terms	of	Its	Relationships	One	approach	to	data
analysis	is	to	find	relationships	among	the	data	objects	and	then	perform	the
remaining	analysis	using	these	relationships	rather	than	the	data	objects
themselves.	For	instance,	we	can	compute	the	similarity	or	distance	between
pairs	of	objects	and	then	perform	the	analysis—clustering,	classification,	or
anomaly	detection—based	on	these	similarities	or	distances.	There	are	many
such	similarity	or	distance	measures,	and	the	proper	choice	depends	on	the
type	of	data	and	the	particular	application.

Example	2.1	(An	Illustration	of	Data-Related
Issues).
To	further	illustrate	the	importance	of	these	issues,	consider	the	following
hypothetical	situation.	You	receive	an	email	from	a	medical	researcher
concerning	a	project	that	you	are	eager	to	work	on.

Hi,

I’ve	attached	the	data	file	that	I	mentioned	in	my	previous	email.	Each	line	contains	the

information	for	a	single	patient	and	consists	of	five	fields.	We	want	to	predict	the	last	field	using

the	other	fields.	I	don’t	have	time	to	provide	any	more	information	about	the	data	since	I’m	going

out	of	town	for	a	couple	of	days,	but	hopefully	that	won’t	slow	you	down	too	much.	And	if	you

don’t	mind,	could	we	meet	when	I	get	back	to	discuss	your	preliminary	results?	I	might	invite	a

few	other	members	of	my	team.

Thanks	and	see	you	in	a	couple	of	days.

Despite	some	misgivings,	you	proceed	to	analyze	the	data.	The	first	few	rows
of	the	file	are	as	follows:

012 232 33.5 0 10.7

020 121 16.9 2 210.1

027 165 24.0 0 427.6

⋮ 	 	 	 	

A	brief	look	at	the	data	reveals	nothing	strange.	You	put	your	doubts	aside
and	start	the	analysis.	There	are	only	1000	lines,	a	smaller	data	file	than	you
had	hoped	for,	but	two	days	later,	you	feel	that	you	have	made	some
progress.	You	arrive	for	the	meeting,	and	while	waiting	for	others	to	arrive,	you
strike	up	a	conversation	with	a	statistician	who	is	working	on	the	project.
When	she	learns	that	you	have	also	been	analyzing	the	data	from	the	project,
she	asks	if	you	would	mind	giving	her	a	brief	overview	of	your	results.

Statistician:	So,	you	got	the	data	for	all	the	patients?

Data	Miner:	Yes.	I	haven’t	had	much	time	for	analysis,	but	I	do	have	a
few	interesting	results.

Statistician:	Amazing.	There	were	so	many	data	issues	with	this	set	of
patients	that	I	couldn’t	do	much.

Data	Miner:	Oh?	I	didn’t	hear	about	any	possible	problems.

Statistician:	Well,	first	there	is	field	5,	the	variable	we	want	to	predict.

It’s	common	knowledge	among	people	who	analyze	this	type	of	data
that	results	are	better	if	you	work	with	the	log	of	the	values,	but	I	didn’t
discover	this	until	later.	Was	it	mentioned	to	you?

Data	Miner:	No.

Statistician:	But	surely	you	heard	about	what	happened	to	field	4?	It’s
supposed	to	be	measured	on	a	scale	from	1	to	10,	with	0	indicating	a
missing	value,	but	because	of	a	data	entry	error,	all	10’s	were	changed
into	0’s.	Unfortunately,	since	some	of	the	patients	have	missing	values
for	this	field,	it’s	impossible	to	say	whether	a	0	in	this	field	is	a	real	0	or
a	10.	Quite	a	few	of	the	records	have	that	problem.

Data	Miner:	Interesting.	Were	there	any	other	problems?

Statistician:	Yes,	fields	2	and	3	are	basically	the	same,	but	I	assume
that	you	probably	noticed	that.

Data	Miner:	Yes,	but	these	fields	were	only	weak	predictors	of	field	5.

Statistician:	Anyway,	given	all	those	problems,	I’m	surprised	you	were
able	to	accomplish	anything.

Data	Miner:	True,	but	my	results	are	really	quite	good.	Field	1	is	a	very
strong	predictor	of	field	5.	I’m	surprised	that	this	wasn’t	noticed	before.

Statistician:	What?	Field	1	is	just	an	identification	number.

Data	Miner:	Nonetheless,	my	results	speak	for	themselves.

Statistician:	Oh,	no!	I	just	remembered.	We	assigned	ID	numbers	after
we	sorted	the	records	based	on	field	5.	There	is	a	strong	connection,
but	it’s	meaningless.	Sorry.

Although	this	scenario	represents	an	extreme	situation,	it	emphasizes	the
importance	of	“knowing	your	data.”	To	that	end,	this	chapter	will	address	each

of	the	four	issues	mentioned	above,	outlining	some	of	the	basic	challenges
and	standard	approaches.

2.1	Types	of	Data
A	data	set	can	often	be	viewed	as	a	collection	of	data	objects.	Other	names
for	a	data	object	are	record,	point,	vector,	pattern,	event,	case,	sample,
instance,	observation,	or	entity.	In	turn,	data	objects	are	described	by	a
number	of	attributes	that	capture	the	characteristics	of	an	object,	such	as	the
mass	of	a	physical	object	or	the	time	at	which	an	event	occurred.	Other
names	for	an	attribute	are	variable,	characteristic,	field,	feature,	or	dimension.

Example	2.2	(Student	Information).
Often,	a	data	set	is	a	file,	in	which	the	objects	are	records	(or	rows)	in	the
file	and	each	field	(or	column)	corresponds	to	an	attribute.	For	example,
Table	2.1 	shows	a	data	set	that	consists	of	student	information.	Each
row	corresponds	to	a	student	and	each	column	is	an	attribute	that
describes	some	aspect	of	a	student,	such	as	grade	point	average	(GPA)	or
identification	number	(ID).

Table	2.1.	A	sample	data	set	containing	student	information.

Student	ID Year Grade	Point	Average	(GPA) …

⋮

1034262 Senior 3.24 …

1052663 Freshman 3.51 …

1082246 Sophomore 3.62 …

Although	record-based	data	sets	are	common,	either	in	flat	files	or	relational
database	systems,	there	are	other	important	types	of	data	sets	and	systems
for	storing	data.	In	Section	2.1.2 ,	we	will	discuss	some	of	the	types	of	data
sets	that	are	commonly	encountered	in	data	mining.	However,	we	first
consider	attributes.

2.1.1	Attributes	and	Measurement

In	this	section,	we	consider	the	types	of	attributes	used	to	describe	data
objects.	We	first	define	an	attribute,	then	consider	what	we	mean	by	the	type
of	an	attribute,	and	finally	describe	the	types	of	attributes	that	are	commonly
encountered.

What	Is	an	Attribute?
We	start	with	a	more	detailed	definition	of	an	attribute.

Definition	2.1.
An	attribute	is	a	property	or	characteristic	of	an	object	that	can
vary,	either	from	one	object	to	another	or	from	one	time	to
another.

For	example,	eye	color	varies	from	person	to	person,	while	the	temperature	of
an	object	varies	over	time.	Note	that	eye	color	is	a	symbolic	attribute	with	a

small	number	of	possible	values	{brown,	black,	blue,	green,	hazel,	etc.}	,	while
temperature	is	a	numerical	attribute	with	a	potentially	unlimited	number	of
values.

At	the	most	basic	level,	attributes	are	not	about	numbers	or	symbols.
However,	to	discuss	and	more	precisely	analyze	the	characteristics	of	objects,
we	assign	numbers	or	symbols	to	them.	To	do	this	in	a	well-defined	way,	we
need	a	measurement	scale.

Definition	2.2.
A	measurement	scale	is	a	rule	(function)	that	associates	a
numerical	or	symbolic	value	with	an	attribute	of	an	object.

Formally,	the	process	of	measurement	is	the	application	of	a	measurement
scale	to	associate	a	value	with	a	particular	attribute	of	a	specific	object.	While
this	may	seem	a	bit	abstract,	we	engage	in	the	process	of	measurement	all
the	time.	For	instance,	we	step	on	a	bathroom	scale	to	determine	our	weight,
we	classify	someone	as	male	or	female,	or	we	count	the	number	of	chairs	in	a
room	to	see	if	there	will	be	enough	to	seat	all	the	people	coming	to	a	meeting.
In	all	these	cases,	the	“physical	value”	of	an	attribute	of	an	object	is	mapped
to	a	numerical	or	symbolic	value.

With	this	background,	we	can	discuss	the	type	of	an	attribute,	a	concept	that
is	important	in	determining	if	a	particular	data	analysis	technique	is	consistent
with	a	specific	type	of	attribute.

The	Type	of	an	Attribute
It	is	common	to	refer	to	the	type	of	an	attribute	as	the	type	of	a	measurement
scale.	It	should	be	apparent	from	the	previous	discussion	that	an	attribute	can
be	described	using	different	measurement	scales	and	that	the	properties	of	an
attribute	need	not	be	the	same	as	the	properties	of	the	values	used	to
measure	it.	In	other	words,	the	values	used	to	represent	an	attribute	can	have
properties	that	are	not	properties	of	the	attribute	itself,	and	vice	versa.	This	is
illustrated	with	two	examples.

Example	2.3	(Employee	Age	and	ID	Number).
Two	attributes	that	might	be	associated	with	an	employee	are	ID	and	age
(in	years).	Both	of	these	attributes	can	be	represented	as	integers.
However,	while	it	is	reasonable	to	talk	about	the	average	age	of	an
employee,	it	makes	no	sense	to	talk	about	the	average	employee	ID.
Indeed,	the	only	aspect	of	employees	that	we	want	to	capture	with	the	ID
attribute	is	that	they	are	distinct.	Consequently,	the	only	valid	operation	for
employee	IDs	is	to	test	whether	they	are	equal.	There	is	no	hint	of	this
limitation,	however,	when	integers	are	used	to	represent	the	employee	ID
attribute.	For	the	age	attribute,	the	properties	of	the	integers	used	to
represent	age	are	very	much	the	properties	of	the	attribute.	Even	so,	the
correspondence	is	not	complete	because,	for	example,	ages	have	a
maximum,	while	integers	do	not.

Example	2.4	(Length	of	Line	Segments).
Consider	Figure	2.1 ,	which	shows	some	objects—line	segments—and
how	the	length	attribute	of	these	objects	can	be	mapped	to	numbers	in	two
different	ways.	Each	successive	line	segment,	going	from	the	top	to	the
bottom,	is	formed	by	appending	the	topmost	line	segment	to	itself.	Thus,

the	second	line	segment	from	the	top	is	formed	by	appending	the	topmost
line	segment	to	itself	twice,	the	third	line	segment	from	the	top	is	formed	by
appending	the	topmost	line	segment	to	itself	three	times,	and	so	forth.	In	a
very	real	(physical)	sense,	all	the	line	segments	are	multiples	of	the	first.
This	fact	is	captured	by	the	measurements	on	the	right	side	of	the	figure,
but	not	by	those	on	the	left	side.	More	specifically,	the	measurement	scale
on	the	left	side	captures	only	the	ordering	of	the	length	attribute,	while	the
scale	on	the	right	side	captures	both	the	ordering	and	additivity	properties.
Thus,	an	attribute	can	be	measured	in	a	way	that	does	not	capture	all	the
properties	of	the	attribute.

Figure	2.1.
The	measurement	of	the	length	of	line	segments	on	two	different	scales	of
measurement.

Knowing	the	type	of	an	attribute	is	important	because	it	tells	us	which
properties	of	the	measured	values	are	consistent	with	the	underlying

properties	of	the	attribute,	and	therefore,	it	allows	us	to	avoid	foolish	actions,
such	as	computing	the	average	employee	ID.

The	Different	Types	of	Attributes
A	useful	(and	simple)	way	to	specify	the	type	of	an	attribute	is	to	identify	the
properties	of	numbers	that	correspond	to	underlying	properties	of	the	attribute.
For	example,	an	attribute	such	as	length	has	many	of	the	properties	of
numbers.	It	makes	sense	to	compare	and	order	objects	by	length,	as	well	as
to	talk	about	the	differences	and	ratios	of	length.	The	following	properties
(operations)	of	numbers	are	typically	used	to	describe	attributes.

1.	 Distinctness	 	and	
2.	 Order	 	and	
3.	 Addition	 	and	
4.	 Multiplication	 	and	/

Given	these	properties,	we	can	define	four	types	of	attributes:	nominal	,
ordinal,	interval	,	and	ratio.	Table	2.2 	gives	the	definitions	of	these	types,
along	with	information	about	the	statistical	operations	that	are	valid	for	each
type.	Each	attribute	type	possesses	all	of	the	properties	and	operations	of	the
attribute	types	above	it.	Consequently,	any	property	or	operation	that	is	valid
for	nominal,	ordinal,	and	interval	attributes	is	also	valid	for	ratio	attributes.	In
other	words,	the	definition	of	the	attribute	types	is	cumulative.	However,	this
does	not	mean	that	the	statistical	operations	appropriate	for	one	attribute	type
are	appropriate	for	the	attribute	types	above	it.

Table	2.2.	Different	attribute	types.

Attribute	Type Description Examples Operations

Categorical Nominal The	values	of	a	nominal	attribute zip	codes, mode,

= ≠
<,	≤,	>, ≥

+ −
×

(Qualitative) are	just	different	names;	i.e.,
nominal	values	provide	only
enough	information	to	distinguish
one	object	from	another.	

employee	ID
numbers,	eye
color,	gender

entropy,
contingency
correlation,
	test

Ordinal The	values	of	an	ordinal	attribute
provide	enough	information	to
order	objects.	

hardness	of
minerals,	{good,
better,	best},
grades,	street
numbers

median,
percentiles,
rank
correlation,
run	tests,
sign	tests

Numeric
(Quantitative)

Interval For	interval	attributes,	the
differences	between	values	are
meaningful,	i.e.,	a	unit	of
measurement	exists.	

calendar	dates,
temperature	in
Celsius	or
Fahrenheit

mean,
standard
deviation,
Pearson’s
correlation,
t	and	F
tests

Ratio For	ratio	variables,	both
differences	and	ratios	are
meaningful.	

temperature	in
Kelvin,	monetary
quantities,	counts,
age,	mass,
length,	electrical
current

geometric
mean,
harmonic
mean,
percent
variation

Nominal	and	ordinal	attributes	are	collectively	referred	to	as	categorical	or
qualitative	attributes.	As	the	name	suggests,	qualitative	attributes,	such	as
employee	ID,	lack	most	of	the	properties	of	numbers.	Even	if	they	are
represented	by	numbers,	i.e.,	integers,	they	should	be	treated	more	like
symbols.	The	remaining	two	types	of	attributes,	interval	and	ratio,	are
collectively	referred	to	as	quantitative	or	numeric	attributes.	Quantitative
attributes	are	represented	by	numbers	and	have	most	of	the	properties	of

(=,	≠) χ2

(<,	>)

(+,	−)

(×,	/)

numbers.	Note	that	quantitative	attributes	can	be	integer-valued	or
continuous.

The	types	of	attributes	can	also	be	described	in	terms	of	transformations	that
do	not	change	the	meaning	of	an	attribute.	Indeed,	S.	Smith	Stevens,	the
psychologist	who	originally	defined	the	types	of	attributes	shown	in	Table
2.2 ,	defined	them	in	terms	of	these	permissible	transformations.	For
example,	the	meaning	of	a	length	attribute	is	unchanged	if	it	is	measured	in
meters	instead	of	feet.

The	statistical	operations	that	make	sense	for	a	particular	type	of	attribute	are
those	that	will	yield	the	same	results	when	the	attribute	is	transformed	by
using	a	transformation	that	preserves	the	attribute’s	meaning.	To	illustrate,	the
average	length	of	a	set	of	objects	is	different	when	measured	in	meters	rather
than	in	feet,	but	both	averages	represent	the	same	length.	Table	2.3 	shows
the	meaning-preserving	transformations	for	the	four	attribute	types	of	Table
2.2 .

Table	2.3.	Transformations	that	define	attribute	levels.

Attribute	Type Transformation Comment

Categorical
(Qualitative)

Nominal Any	one-to-one	mapping,
e.g.,	a	permutation	of	values

If	all	employee	ID	numbers	are
reassigned,	it	will	not	make	any
difference.

Ordinal An	order-preserving	change
of	values,	i.e.,

where	f	is	a	monotonic
function.

An	attribute	encompassing	the	notion
of	good,	better,	best	can	be
represented	equally	well	by	the	values
{1,	2,	3}	or	by	{0.5,	1,	10}.

Numeric
(Quantitative)

Interval
a	and	b	constants.

The	Fahrenheit	and	Celsius
temperature	scales	differ	in	the

new_value=f(old_value),

new_value=a×old_value+b,

location	of	their	zero	value	and	the
size	of	a	degree	(unit).

Ratio Length	can	be	measured	in	meters	or
feet.

Example	2.5	(Temperature	Scales).
Temperature	provides	a	good	illustration	of	some	of	the	concepts	that	have
been	described.	First,	temperature	can	be	either	an	interval	or	a	ratio
attribute,	depending	on	its	measurement	scale.	When	measured	on	the
Kelvin	scale,	a	temperature	of	2 	is,	in	a	physically	meaningful	way,	twice

that	of	a	temperature	of	1 .	This	is	not	true	when	temperature	is	measured

on	either	the	Celsius	or	Fahrenheit	scales,	because,	physically,	a
temperature	of	1 	Fahrenheit	(Celsius)	is	not	much	different	than	a

temperature	of	2 	Fahrenheit	(Celsius).	The	problem	is	that	the	zero	points

of	the	Fahrenheit	and	Celsius	scales	are,	in	a	physical	sense,	arbitrary,
and	therefore,	the	ratio	of	two	Celsius	or	Fahrenheit	temperatures	is	not
physically	meaningful.

Describing	Attributes	by	the	Number	of	Values
An	independent	way	of	distinguishing	between	attributes	is	by	the	number	of
values	they	can	take.

Discrete	A	discrete	attribute	has	a	finite	or	countably	infinite	set	of	values.
Such	attributes	can	be	categorical,	such	as	zip	codes	or	ID	numbers,	or
numeric,	such	as	counts.	Discrete	attributes	are	often	represented	using
integer	variables.	Binary	attributes	are	a	special	case	of	discrete	attributes
and	assume	only	two	values,	e.g.,	true/false,	yes/no,	male/female,	or	0/1.

new_value=a×old_value

◦

◦

◦

◦

Binary	attributes	are	often	represented	as	Boolean	variables,	or	as	integer
variables	that	only	take	the	values	0	or	1.

Continuous	A	continuous	attribute	is	one	whose	values	are	real	numbers.
Examples	include	attributes	such	as	temperature,	height,	or	weight.
Continuous	attributes	are	typically	represented	as	floating-point	variables.
Practically,	real	values	can	be	measured	and	represented	only	with	limited
precision.

In	theory,	any	of	the	measurement	scale	types—nominal,	ordinal,	interval,	and
ratio—could	be	combined	with	any	of	the	types	based	on	the	number	of
attribute	values—binary,	discrete,	and	continuous.	However,	some
combinations	occur	only	infrequently	or	do	not	make	much	sense.	For
instance,	it	is	difficult	to	think	of	a	realistic	data	set	that	contains	a	continuous
binary	attribute.	Typically,	nominal	and	ordinal	attributes	are	binary	or	discrete,
while	interval	and	ratio	attributes	are	continuous.	However,	count	attributes	,
which	are	discrete,	are	also	ratio	attributes.

Asymmetric	Attributes
For	asymmetric	attributes,	only	presence—a	non-zero	attribute	value—is
regarded	as	important.	Consider	a	data	set	in	which	each	object	is	a	student
and	each	attribute	records	whether	a	student	took	a	particular	course	at	a
university.	For	a	specific	student,	an	attribute	has	a	value	of	1	if	the	student
took	the	course	associated	with	that	attribute	and	a	value	of	0	otherwise.
Because	students	take	only	a	small	fraction	of	all	available	courses,	most	of
the	values	in	such	a	data	set	would	be	0.	Therefore,	it	is	more	meaningful	and
more	efficient	to	focus	on	the	non-zero	values.	To	illustrate,	if	students	are
compared	on	the	basis	of	the	courses	they	don’t	take,	then	most	students
would	seem	very	similar,	at	least	if	the	number	of	courses	is	large.	Binary
attributes	where	only	non-zero	values	are	important	are	called	asymmetric

binary	attributes.	This	type	of	attribute	is	particularly	important	for
association	analysis,	which	is	discussed	in	Chapter	5 .	It	is	also	possible	to
have	discrete	or	continuous	asymmetric	features.	For	instance,	if	the	number
of	credits	associated	with	each	course	is	recorded,	then	the	resulting	data	set
will	consist	of	asymmetric	discrete	or	continuous	attributes.

General	Comments	on	Levels	of	Measurement
As	described	in	the	rest	of	this	chapter,	there	are	many	diverse	types	of	data.
The	previous	discussion	of	measurement	scales,	while	useful,	is	not	complete
and	has	some	limitations.	We	provide	the	following	comments	and	guidance.

Distinctness,	order,	and	meaningful	intervals	and	ratios	are	only	four
properties	of	data—many	others	are	possible.	For	instance,	some	data
is	inherently	cyclical,	e.g.,	position	on	the	surface	of	the	Earth	or	time.	As
another	example,	consider	set	valued	attributes,	where	each	attribute
value	is	a	set	of	elements,	e.g.,	the	set	of	movies	seen	in	the	last	year.
Define	one	set	of	elements	(movies)	to	be	greater	(larger)	than	a	second
set	if	the	second	set	is	a	subset	of	the	first.	However,	such	a	relationship
defines	only	a	partial	order	that	does	not	match	any	of	the	attribute	types
just	defined.
The	numbers	or	symbols	used	to	capture	attribute	values	may	not
capture	all	the	properties	of	the	attributes	or	may	suggest	properties
that	are	not	there.	An	illustration	of	this	for	integers	was	presented	in
Example	2.3 	,	i.e.,	averages	of	IDs	and	out	of	range	ages.
Data	is	often	transformed	for	the	purpose	of	analysis—see	Section
2.3.7 .	This	often	changes	the	distribution	of	the	observed	variable	to	a
distribution	that	is	easier	to	analyze,	e.g.,	a	Gaussian	(normal)	distribution.
Often,	such	transformations	only	preserve	the	order	of	the	original	values,
and	other	properties	are	lost.	Nonetheless,	if	the	desired	outcome	is	a

statistical	test	of	differences	or	a	predictive	model,	such	a	transformation	is
justified.
The	final	evaluation	of	any	data	analysis,	including	operations	on
attributes,	is	whether	the	results	make	sense	from	a	domain	point	of
view.

In	summary,	it	can	be	challenging	to	determine	which	operations	can	be
performed	on	a	particular	attribute	or	a	collection	of	attributes	without
compromising	the	integrity	of	the	analysis.	Fortunately,	established	practice
often	serves	as	a	reliable	guide.	Occasionally,	however,	standard	practices
are	erroneous	or	have	limitations.

2.1.2	Types	of	Data	Sets

There	are	many	types	of	data	sets,	and	as	the	field	of	data	mining	develops
and	matures,	a	greater	variety	of	data	sets	become	available	for	analysis.	In
this	section,	we	describe	some	of	the	most	common	types.	For	convenience,
we	have	grouped	the	types	of	data	sets	into	three	groups:	record	data,	graph-
based	data,	and	ordered	data.	These	categories	do	not	cover	all	possibilities
and	other	groupings	are	certainly	possible.

General	Characteristics	of	Data	Sets
Before	providing	details	of	specific	kinds	of	data	sets,	we	discuss	three
characteristics	that	apply	to	many	data	sets	and	have	a	significant	impact	on
the	data	mining	techniques	that	are	used:	dimensionality,	distribution,	and
resolution.

Dimensionality

The	dimensionality	of	a	data	set	is	the	number	of	attributes	that	the	objects	in
the	data	set	possess.	Analyzing	data	with	a	small	number	of	dimensions	tends
to	be	qualitatively	different	from	analyzing	moderate	or	high-dimensional	data.
Indeed,	the	difficulties	associated	with	the	analysis	of	high-dimensional	data
are	sometimes	referred	to	as	the	curse	of	dimensionality.	Because	of	this,
an	important	motivation	in	preprocessing	the	data	is	dimensionality
reduction.	These	issues	are	discussed	in	more	depth	later	in	this	chapter	and
in	Appendix	B.

Distribution

The	distribution	of	a	data	set	is	the	frequency	of	occurrence	of	various	values
or	sets	of	values	for	the	attributes	comprising	data	objects.	Equivalently,	the
distribution	of	a	data	set	can	be	considered	as	a	description	of	the
concentration	of	objects	in	various	regions	of	the	data	space.	Statisticians
have	enumerated	many	types	of	distributions,	e.g.,	Gaussian	(normal),	and
described	their	properties.	(See	Appendix	C.)	Although	statistical	approaches
for	describing	distributions	can	yield	powerful	analysis	techniques,	many	data
sets	have	distributions	that	are	not	well	captured	by	standard	statistical
distributions.

As	a	result,	many	data	mining	algorithms	do	not	assume	a	particular	statistical
distribution	for	the	data	they	analyze.	However,	some	general	aspects	of
distributions	often	have	a	strong	impact.	For	example,	suppose	a	categorical
attribute	is	used	as	a	class	variable,	where	one	of	the	categories	occurs	95%
of	the	time,	while	the	other	categories	together	occur	only	5%	of	the	time.	This
skewness	in	the	distribution	can	make	classification	difficult	as	discussed	in
Section	4.11.	(Skewness	has	other	impacts	on	data	analysis	that	are	not
discussed	here.)

A	special	case	of	skewed	data	is	sparsity.	For	sparse	binary,	count	or
continuous	data,	most	attributes	of	an	object	have	values	of	0.	In	many	cases,
fewer	than	1%	of	the	values	are	non-zero.	In	practical	terms,	sparsity	is	an
advantage	because	usually	only	the	non-zero	values	need	to	be	stored	and
manipulated.	This	results	in	significant	savings	with	respect	to	computation
time	and	storage.	Indeed,	some	data	mining	algorithms,	such	as	the
association	rule	mining	algorithms	described	in	Chapter	5 ,	work	well	only
for	sparse	data.	Finally,	note	that	often	the	attributes	in	sparse	data	sets	are
asymmetric	attributes.

Resolution

It	is	frequently	possible	to	obtain	data	at	different	levels	of	resolution,	and
often	the	properties	of	the	data	are	different	at	different	resolutions.	For
instance,	the	surface	of	the	Earth	seems	very	uneven	at	a	resolution	of	a	few
meters,	but	is	relatively	smooth	at	a	resolution	of	tens	of	kilometers.	The
patterns	in	the	data	also	depend	on	the	level	of	resolution.	If	the	resolution	is
too	fine,	a	pattern	may	not	be	visible	or	may	be	buried	in	noise;	if	the
resolution	is	too	coarse,	the	pattern	can	disappear.	For	example,	variations	in
atmospheric	pressure	on	a	scale	of	hours	reflect	the	movement	of	storms	and
other	weather	systems.	On	a	scale	of	months,	such	phenomena	are	not
detectable.

Record	Data
Much	data	mining	work	assumes	that	the	data	set	is	a	collection	of	records
(data	objects),	each	of	which	consists	of	a	fixed	set	of	data	fields	(attributes).
See	Figure	2.2(a) .	For	the	most	basic	form	of	record	data,	there	is	no
explicit	relationship	among	records	or	data	fields,	and	every	record	(object)
has	the	same	set	of	attributes.	Record	data	is	usually	stored	either	in	flat	files
or	in	relational	databases.	Relational	databases	are	certainly	more	than	a

collection	of	records,	but	data	mining	often	does	not	use	any	of	the	additional
information	available	in	a	relational	database.	Rather,	the	database	serves	as
a	convenient	place	to	find	records.	Different	types	of	record	data	are
described	below	and	are	illustrated	in	Figure	2.2 .

Figure	2.2.
Different	variations	of	record	data.

Transaction	or	Market	Basket	Data

Transaction	data	is	a	special	type	of	record	data,	where	each	record
(transaction)	involves	a	set	of	items.	Consider	a	grocery	store.	The	set	of
products	purchased	by	a	customer	during	one	shopping	trip	constitutes	a
transaction,	while	the	individual	products	that	were	purchased	are	the	items.
This	type	of	data	is	called	market	basket	data	because	the	items	in	each
record	are	the	products	in	a	person’s	“market	basket.”	Transaction	data	is	a
collection	of	sets	of	items,	but	it	can	be	viewed	as	a	set	of	records	whose
fields	are	asymmetric	attributes.	Most	often,	the	attributes	are	binary,
indicating	whether	an	item	was	purchased,	but	more	generally,	the	attributes
can	be	discrete	or	continuous,	such	as	the	number	of	items	purchased	or	the
amount	spent	on	those	items.	Figure	2.2(b) 	shows	a	sample	transaction
data	set.	Each	row	represents	the	purchases	of	a	particular	customer	at	a
particular	time.

The	Data	Matrix

If	all	the	data	objects	in	a	collection	of	data	have	the	same	fixed	set	of	numeric
attributes,	then	the	data	objects	can	be	thought	of	as	points	(vectors)	in	a
multidimensional	space,	where	each	dimension	represents	a	distinct	attribute
describing	the	object.	A	set	of	such	data	objects	can	be	interpreted	as	an	m	by
n	matrix,	where	there	are	m	rows,	one	for	each	object,	and	n	columns,	one	for
each	attribute.	(A	representation	that	has	data	objects	as	columns	and
attributes	as	rows	is	also	fine.)	This	matrix	is	called	a	data	matrix	or	a	pattern
matrix.	A	data	matrix	is	a	variation	of	record	data,	but	because	it	consists	of
numeric	attributes,	standard	matrix	operation	can	be	applied	to	transform	and
manipulate	the	data.	Therefore,	the	data	matrix	is	the	standard	data	format	for
most	statistical	data.	Figure	2.2(c) 	shows	a	sample	data	matrix.

The	Sparse	Data	Matrix

A	sparse	data	matrix	is	a	special	case	of	a	data	matrix	where	the	attributes
are	of	the	same	type	and	are	asymmetric;	i.e.,	only	non-zero	values	are
important.	Transaction	data	is	an	example	of	a	sparse	data	matrix	that	has
only	0–1	entries.	Another	common	example	is	document	data.	In	particular,	if
the	order	of	the	terms	(words)	in	a	document	is	ignored—the	“bag	of	words”
approach—then	a	document	can	be	represented	as	a	term	vector,	where	each
term	is	a	component	(attribute)	of	the	vector	and	the	value	of	each	component
is	the	number	of	times	the	corresponding	term	occurs	in	the	document.	This
representation	of	a	collection	of	documents	is	often	called	a	document-term
matrix.	Figure	2.2(d) 	shows	a	sample	document-term	matrix.	The
documents	are	the	rows	of	this	matrix,	while	the	terms	are	the	columns.	In
practice,	only	the	non-zero	entries	of	sparse	data	matrices	are	stored.

Graph-Based	Data
A	graph	can	sometimes	be	a	convenient	and	powerful	representation	for	data.
We	consider	two	specific	cases:	(1)	the	graph	captures	relationships	among
data	objects	and	(2)	the	data	objects	themselves	are	represented	as	graphs.

Data	with	Relationships	among	Objects

The	relationships	among	objects	frequently	convey	important	information.	In
such	cases,	the	data	is	often	represented	as	a	graph.	In	particular,	the	data
objects	are	mapped	to	nodes	of	the	graph,	while	the	relationships	among
objects	are	captured	by	the	links	between	objects	and	link	properties,	such	as
direction	and	weight.	Consider	web	pages	on	the	World	Wide	Web,	which
contain	both	text	and	links	to	other	pages.	In	order	to	process	search	queries,
web	search	engines	collect	and	process	web	pages	to	extract	their	contents.	It
is	well-known,	however,	that	the	links	to	and	from	each	page	provide	a	great
deal	of	information	about	the	relevance	of	a	web	page	to	a	query,	and	thus,
must	also	be	taken	into	consideration.	Figure	2.3(a) 	shows	a	set	of	linked

web	pages.	Another	important	example	of	such	graph	data	are	the	social
networks,	where	data	objects	are	people	and	the	relationships	among	them
are	their	interactions	via	social	media.

Data	with	Objects	That	Are	Graphs

If	objects	have	structure,	that	is,	the	objects	contain	subobjects	that	have
relationships,	then	such	objects	are	frequently	represented	as	graphs.	For
example,	the	structure	of	chemical	compounds	can	be	represented	by	a
graph,	where	the	nodes	are	atoms	and	the	links	between	nodes	are	chemical
bonds.	Figure	2.3(b) 	shows	a	ball-and-stick	diagram	of	the	chemical
compound	benzene,	which	contains	atoms	of	carbon	(black)	and	hydrogen
(gray).	A	graph	representation	makes	it	possible	to	determine	which
substructures	occur	frequently	in	a	set	of	compounds	and	to	ascertain
whether	the	presence	of	any	of	these	substructures	is	associated	with	the
presence	or	absence	of	certain	chemical	properties,	such	as	melting	point	or
heat	of	formation.	Frequent	graph	mining,	which	is	a	branch	of	data	mining
that	analyzes	such	data,	is	considered	in	Section	6.5.

Figure	2.3.
Different	variations	of	graph	data.

Ordered	Data
For	some	types	of	data,	the	attributes	have	relationships	that	involve	order	in
time	or	space.	Different	types	of	ordered	data	are	described	next	and	are
shown	in	Figure	2.4 .

Sequential	Transaction	Data

Sequential	transaction	data	can	be	thought	of	as	an	extension	of	transaction
data,	where	each	transaction	has	a	time	associated	with	it.	Consider	a	retail
transaction	data	set	that	also	stores	the	time	at	which	the	transaction	took
place.	This	time	information	makes	it	possible	to	find	patterns	such	as	“candy
sales	peak	before	Halloween.”	A	time	can	also	be	associated	with	each
attribute.	For	example,	each	record	could	be	the	purchase	history	of	a

customer,	with	a	listing	of	items	purchased	at	different	times.	Using	this
information,	it	is	possible	to	find	patterns	such	as	“people	who	buy	DVD
players	tend	to	buy	DVDs	in	the	period	immediately	following	the	purchase.”

Figure	2.4(a) 	shows	an	example	of	sequential	transaction	data.	There	are
five	different	times—t1,	t2,	t3,	t4,	and	t5;	three	different	customers—C1,	C2,
and	C3;	and	five	different	items—A,	B,	C,	D,	and	E.	In	the	top	table,	each	row
corresponds	to	the	items	purchased	at	a	particular	time	by	each	customer.	For
instance,	at	time	t3,	customer	C2	purchased	items	A	and	D.	In	the	bottom
table,	the	same	information	is	displayed,	but	each	row	corresponds	to	a
particular	customer.	Each	row	contains	information	about	each	transaction
involving	the	customer,	where	a	transaction	is	considered	to	be	a	set	of	items
and	the	time	at	which	those	items	were	purchased.	For	example,	customer	C3
bought	items	A	and	C	at	time	t2.

Time	Series	Data

Time	series	data	is	a	special	type	of	ordered	data	where	each	record	is	a	time
series	,	i.e.,	a	series	of	measurements	taken	over	time.	For	example,	a
financial	data	set	might	contain	objects	that	are	time	series	of	the	daily	prices
of	various	stocks.	As	another	example,	consider	Figure	2.4(c) ,	which
shows	a	time	series	of	the	average	monthly	temperature	for	Minneapolis
during	the	years	1982	to	1994.	When	working	with	temporal	data,	such	as
time	series,	it	is	important	to	consider	temporal	autocorrelation;	i.e.,	if	two
measurements	are	close	in	time,	then	the	values	of	those	measurements	are
often	very	similar.

Figure	2.4.
Different	variations	of	ordered	data.

Sequence	Data

Sequence	data	consists	of	a	data	set	that	is	a	sequence	of	individual	entities,
such	as	a	sequence	of	words	or	letters.	It	is	quite	similar	to	sequential	data,
except	that	there	are	no	time	stamps;	instead,	there	are	positions	in	an
ordered	sequence.	For	example,	the	genetic	information	of	plants	and	animals
can	be	represented	in	the	form	of	sequences	of	nucleotides	that	are	known	as
genes.	Many	of	the	problems	associated	with	genetic	sequence	data	involve
predicting	similarities	in	the	structure	and	function	of	genes	from	similarities	in
nucleotide	sequences.	Figure	2.4(b) 	shows	a	section	of	the	human	genetic
code	expressed	using	the	four	nucleotides	from	which	all	DNA	is	constructed:
A,	T,	G,	and	C.

Spatial	and	Spatio-Temporal	Data

Some	objects	have	spatial	attributes,	such	as	positions	or	areas,	in	addition	to
other	types	of	attributes.	An	example	of	spatial	data	is	weather	data
(precipitation,	temperature,	pressure)	that	is	collected	for	a	variety	of
geographical	locations.	Often	such	measurements	are	collected	over	time,
and	thus,	the	data	consists	of	time	series	at	various	locations.	In	that	case,	we
refer	to	the	data	as	spatio-temporal	data.	Although	analysis	can	be	conducted
separately	for	each	specific	time	or	location,	a	more	complete	analysis	of
spatio-temporal	data	requires	consideration	of	both	the	spatial	and	temporal
aspects	of	the	data.

An	important	aspect	of	spatial	data	is	spatial	autocorrelation;	i.e.,	objects
that	are	physically	close	tend	to	be	similar	in	other	ways	as	well.	Thus,	two
points	on	the	Earth	that	are	close	to	each	other	usually	have	similar	values	for
temperature	and	rainfall.	Note	that	spatial	autocorrelation	is	analogous	to
temporal	autocorrelation.

Important	examples	of	spatial	and	spatio-temporal	data	are	the	science	and
engineering	data	sets	that	are	the	result	of	measurements	or	model	output

taken	at	regularly	or	irregularly	distributed	points	on	a	two-	or	three-
dimensional	grid	or	mesh.	For	instance,	Earth	science	data	sets	record	the
temperature	or	pressure	measured	at	points	(grid	cells)	on	latitude–longitude
spherical	grids	of	various	resolutions,	e.g.,	 	by	 	See	Figure	2.4(d) .	As
another	example,	in	the	simulation	of	the	flow	of	a	gas,	the	speed	and
direction	of	flow	at	various	instants	in	time	can	be	recorded	for	each	grid	point
in	the	simulation.	A	different	type	of	spatio-temporal	data	arises	from	tracking
the	trajectories	of	objects,	e.g.,	vehicles,	in	time	and	space.

Handling	Non-Record	Data
Most	data	mining	algorithms	are	designed	for	record	data	or	its	variations,
such	as	transaction	data	and	data	matrices.	Record-oriented	techniques	can
be	applied	to	non-record	data	by	extracting	features	from	data	objects	and
using	these	features	to	create	a	record	corresponding	to	each	object.
Consider	the	chemical	structure	data	that	was	described	earlier.	Given	a	set	of
common	substructures,	each	compound	can	be	represented	as	a	record	with
binary	attributes	that	indicate	whether	a	compound	contains	a	specific
substructure.	Such	a	representation	is	actually	a	transaction	data	set,	where
the	transactions	are	the	compounds	and	the	items	are	the	substructures.

In	some	cases,	it	is	easy	to	represent	the	data	in	a	record	format,	but	this	type
of	representation	does	not	capture	all	the	information	in	the	data.	Consider
spatio-temporal	data	consisting	of	a	time	series	from	each	point	on	a	spatial
grid.	This	data	is	often	stored	in	a	data	matrix,	where	each	row	represents	a
location	and	each	column	represents	a	particular	point	in	time.	However,	such
a	representation	does	not	explicitly	capture	the	time	relationships	that	are
present	among	attributes	and	the	spatial	relationships	that	exist	among
objects.	This	does	not	mean	that	such	a	representation	is	inappropriate,	but
rather	that	these	relationships	must	be	taken	into	consideration	during	the
analysis.	For	example,	it	would	not	be	a	good	idea	to	use	a	data	mining

1° 1°.

technique	that	ignores	the	temporal	autocorrelation	of	the	attributes	or	the
spatial	autocorrelation	of	the	data	objects,	i.e.,	the	locations	on	the	spatial
grid.

2.2	Data	Quality
Data	mining	algorithms	are	often	applied	to	data	that	was	collected	for	another
purpose,	or	for	future,	but	unspecified	applications.	For	that	reason,	data
mining	cannot	usually	take	advantage	of	the	significant	benefits	of	“ad-
dressing	quality	issues	at	the	source.”	In	contrast,	much	of	statistics	deals	with
the	design	of	experiments	or	surveys	that	achieve	a	prespecified	level	of	data
quality.	Because	preventing	data	quality	problems	is	typically	not	an	option,
data	mining	focuses	on	(1)	the	detection	and	correction	of	data	quality
problems	and	(2)	the	use	of	algorithms	that	can	tolerate	poor	data	quality.	The
first	step,	detection	and	correction,	is	often	called	data	cleaning.

The	following	sections	discuss	specific	aspects	of	data	quality.	The	focus	is	on
measurement	and	data	collection	issues,	although	some	application-related
issues	are	also	discussed.

2.2.1	Measurement	and	Data
Collection	Issues

It	is	unrealistic	to	expect	that	data	will	be	perfect.	There	may	be	problems	due
to	human	error,	limitations	of	measuring	devices,	or	flaws	in	the	data	collection
process.	Values	or	even	entire	data	objects	can	be	missing.	In	other	cases,
there	can	be	spurious	or	duplicate	objects;	i.e.,	multiple	data	objects	that	all
correspond	to	a	single	“real”	object.	For	example,	there	might	be	two	different
records	for	a	person	who	has	recently	lived	at	two	different	addresses.	Even	if

all	the	data	is	present	and	“looks	fine,”	there	may	be	inconsistencies—a
person	has	a	height	of	2	meters,	but	weighs	only	2	kilograms.

In	the	next	few	sections,	we	focus	on	aspects	of	data	quality	that	are	related
to	data	measurement	and	collection.	We	begin	with	a	definition	of
measurement	and	data	collection	errors	and	then	consider	a	variety	of
problems	that	involve	measurement	error:	noise,	artifacts,	bias,	precision,	and
accuracy.	We	conclude	by	discussing	data	quality	issues	that	involve	both
measurement	and	data	collection	problems:	outliers,	missing	and	inconsistent
values,	and	duplicate	data.

Measurement	and	Data	Collection	Errors
The	term	measurement	error	refers	to	any	problem	resulting	from	the
measurement	process.	A	common	problem	is	that	the	value	recorded	differs
from	the	true	value	to	some	extent.	For	continuous	attributes,	the	numerical
difference	of	the	measured	and	true	value	is	called	the	error.	The	term	data
collection	error	refers	to	errors	such	as	omitting	data	objects	or	attribute
values,	or	inappropriately	including	a	data	object.	For	example,	a	study	of
animals	of	a	certain	species	might	include	animals	of	a	related	species	that
are	similar	in	appearance	to	the	species	of	interest.	Both	measurement	errors
and	data	collection	errors	can	be	either	systematic	or	random.

We	will	only	consider	general	types	of	errors.	Within	particular	domains,
certain	types	of	data	errors	are	commonplace,	and	well-developed	techniques
often	exist	for	detecting	and/or	correcting	these	errors.	For	example,	keyboard
errors	are	common	when	data	is	entered	manually,	and	as	a	result,	many	data
entry	programs	have	techniques	for	detecting	and,	with	human	intervention,
correcting	such	errors.

Noise	and	Artifacts
Noise	is	the	random	component	of	a	measurement	error.	It	typically	involves
the	distortion	of	a	value	or	the	addition	of	spurious	objects.	Figure	2.5
shows	a	time	series	before	and	after	it	has	been	disrupted	by	random	noise.	If
a	bit	more	noise	were	added	to	the	time	series,	its	shape	would	be	lost.
Figure	2.6 	shows	a	set	of	data	points	before	and	after	some	noise	points
(indicated	by)	have	been	added.	Notice	that	some	of	the	noise	points	are
intermixed	with	the	non-noise	points.

Figure	2.5.
Noise	in	a	time	series	context.

‘+’s

Figure	2.6.
Noise	in	a	spatial	context.

The	term	noise	is	often	used	in	connection	with	data	that	has	a	spatial	or
temporal	component.	In	such	cases,	techniques	from	signal	or	image
processing	can	frequently	be	used	to	reduce	noise	and	thus,	help	to	discover
patterns	(signals)	that	might	be	“lost	in	the	noise.”	Nonetheless,	the
elimination	of	noise	is	frequently	difficult,	and	much	work	in	data	mining
focuses	on	devising	robust	algorithms	that	produce	acceptable	results	even
when	noise	is	present.

Data	errors	can	be	the	result	of	a	more	deterministic	phenomenon,	such	as	a
streak	in	the	same	place	on	a	set	of	photographs.	Such	deterministic
distortions	of	the	data	are	often	referred	to	as	artifacts.

Precision,	Bias,	and	Accuracy
In	statistics	and	experimental	science,	the	quality	of	the	measurement	process
and	the	resulting	data	are	measured	by	precision	and	bias.	We	provide	the

standard	definitions,	followed	by	a	brief	discussion.	For	the	following
definitions,	we	assume	that	we	make	repeated	measurements	of	the	same
underlying	quantity.

Definition	2.3	(Precision).
The	closeness	of	repeated	measurements	(of	the	same
quantity)	to	one	another.

Definition	2.4	(Bias).
A	systematic	variation	of	measurements	from	the	quantity	being
measured.

Precision	is	often	measured	by	the	standard	deviation	of	a	set	of	values,	while
bias	is	measured	by	taking	the	difference	between	the	mean	of	the	set	of
values	and	the	known	value	of	the	quantity	being	measured.	Bias	can	be
determined	only	for	objects	whose	measured	quantity	is	known	by	means
external	to	the	current	situation.	Suppose	that	we	have	a	standard	laboratory
weight	with	a	mass	of	1g	and	want	to	assess	the	precision	and	bias	of	our
new	laboratory	scale.	We	weigh	the	mass	five	times,	and	obtain	the	following
five	values:{	1.015,	0.990,	1.013,	1.001,	0.986}.	The	mean	of	these	values	is

1.001,	and	hence,	the	bias	is	0.001.	The	precision,	as	measured	by	the
standard	deviation,	is	0.013.

It	is	common	to	use	the	more	general	term,	accuracy	,	to	refer	to	the	degree
of	measurement	error	in	data.

Definition	2.5	(Accuracy)
The	closeness	of	measurements	to	the	true	value	of	the	quantity
being	measured.

Accuracy	depends	on	precision	and	bias,	but	there	is	no	specific	formula	for
accuracy	in	terms	of	these	two	quantities.

One	important	aspect	of	accuracy	is	the	use	of	significant	digits.	The	goal	is
to	use	only	as	many	digits	to	represent	the	result	of	a	measurement	or
calculation	as	are	justified	by	the	precision	of	the	data.	For	example,	if	the
length	of	an	object	is	measured	with	a	meter	stick	whose	smallest	markings
are	millimeters,	then	we	should	record	the	length	of	data	only	to	the	nearest
millimeter.	The	precision	of	such	a	measurement	would	be	 	We	do
not	review	the	details	of	working	with	significant	digits	because	most	readers
will	have	encountered	them	in	previous	courses	and	they	are	covered	in
considerable	depth	in	science,	engineering,	and	statistics	textbooks.

Issues	such	as	significant	digits,	precision,	bias,	and	accuracy	are	sometimes
overlooked,	but	they	are	important	for	data	mining	as	well	as	statistics	and
science.	Many	times,	data	sets	do	not	come	with	information	about	the

±	0.5mm.

precision	of	the	data,	and	furthermore,	the	programs	used	for	analysis	return
results	without	any	such	information.	Nonetheless,	without	some
understanding	of	the	accuracy	of	the	data	and	the	results,	an	analyst	runs	the
risk	of	committing	serious	data	analysis	blunders.

Outliers
Outliers	are	either	(1)	data	objects	that,	in	some	sense,	have	characteristics
that	are	different	from	most	of	the	other	data	objects	in	the	data	set,	or	(2)
values	of	an	attribute	that	are	unusual	with	respect	to	the	typical	values	for
that	attribute.	Alternatively,	they	can	be	referred	to	as	anomalous	objects	or
values.	There	is	considerable	leeway	in	the	definition	of	an	outlier,	and	many
different	definitions	have	been	proposed	by	the	statistics	and	data	mining
communities.	Furthermore,	it	is	important	to	distinguish	between	the	notions	of
noise	and	outliers.	Unlike	noise,	outliers	can	be	legitimate	data	objects	or
values	that	we	are	interested	in	detecting.	For	instance,	in	fraud	and	network
intrusion	detection,	the	goal	is	to	find	unusual	objects	or	events	from	among	a
large	number	of	normal	ones.	Chapter	9 	discusses	anomaly	detection	in
more	detail.

Missing	Values
It	is	not	unusual	for	an	object	to	be	missing	one	or	more	attribute	values.	In
some	cases,	the	information	was	not	collected;	e.g.,	some	people	decline	to
give	their	age	or	weight.	In	other	cases,	some	attributes	are	not	applicable	to
all	objects;	e.g.,	often,	forms	have	conditional	parts	that	are	filled	out	only
when	a	person	answers	a	previous	question	in	a	certain	way,	but	for	simplicity,
all	fields	are	stored.	Regardless,	missing	values	should	be	taken	into	account
during	the	data	analysis.

There	are	several	strategies	(and	variations	on	these	strategies)	for	dealing
with	missing	data,	each	of	which	is	appropriate	in	certain	circumstances.
These	strategies	are	listed	next,	along	with	an	indication	of	their	advantages
and	disadvantages.

Eliminate	Data	Objects	or	Attributes

A	simple	and	effective	strategy	is	to	eliminate	objects	with	missing	values.
However,	even	a	partially	specified	data	object	contains	some	information,
and	if	many	objects	have	missing	values,	then	a	reliable	analysis	can	be
difficult	or	impossible.	Nonetheless,	if	a	data	set	has	only	a	few	objects	that
have	missing	values,	then	it	may	be	expedient	to	omit	them.	A	related	strategy
is	to	eliminate	attributes	that	have	missing	values.	This	should	be	done	with
caution,	however,	because	the	eliminated	attributes	may	be	the	ones	that	are
critical	to	the	analysis.

Estimate	Missing	Values

Sometimes	missing	data	can	be	reliably	estimated.	For	example,	consider	a
time	series	that	changes	in	a	reasonably	smooth	fashion,	but	has	a	few,
widely	scattered	missing	values.	In	such	cases,	the	missing	values	can	be
estimated	(interpolated)	by	using	the	remaining	values.	As	another	example,
consider	a	data	set	that	has	many	similar	data	points.	In	this	situation,	the
attribute	values	of	the	points	closest	to	the	point	with	the	missing	value	are
often	used	to	estimate	the	missing	value.	If	the	attribute	is	continuous,	then
the	average	attribute	value	of	the	nearest	neighbors	is	used;	if	the	attribute	is
categorical,	then	the	most	commonly	occurring	attribute	value	can	be	taken.
For	a	concrete	illustration,	consider	precipitation	measurements	that	are
recorded	by	ground	stations.	For	areas	not	containing	a	ground	station,	the
precipitation	can	be	estimated	using	values	observed	at	nearby	ground
stations.

Ignore	the	Missing	Value	during	Analysis

Many	data	mining	approaches	can	be	modified	to	ignore	missing	values.	For
example,	suppose	that	objects	are	being	clustered	and	the	similarity	between
pairs	of	data	objects	needs	to	be	calculated.	If	one	or	both	objects	of	a	pair
have	missing	values	for	some	attributes,	then	the	similarity	can	be	calculated
by	using	only	the	attributes	that	do	not	have	missing	values.	It	is	true	that	the
similarity	will	only	be	approximate,	but	unless	the	total	number	of	attributes	is
small	or	the	number	of	missing	values	is	high,	this	degree	of	inaccuracy	may
not	matter	much.	Likewise,	many	classification	schemes	can	be	modified	to
work	with	missing	values.

Inconsistent	Values
Data	can	contain	inconsistent	values.	Consider	an	address	field,	where	both	a
zip	code	and	city	are	listed,	but	the	specified	zip	code	area	is	not	contained	in
that	city.	It	is	possible	that	the	individual	entering	this	information	transposed
two	digits,	or	perhaps	a	digit	was	misread	when	the	information	was	scanned
from	a	handwritten	form.	Regardless	of	the	cause	of	the	inconsistent	values,	it
is	important	to	detect	and,	if	possible,	correct	such	problems.

Some	types	of	inconsistences	are	easy	to	detect.	For	instance,	a	person’s
height	should	not	be	negative.	In	other	cases,	it	can	be	necessary	to	consult
an	external	source	of	information.	For	example,	when	an	insurance	company
processes	claims	for	reimbursement,	it	checks	the	names	and	addresses	on
the	reimbursement	forms	against	a	database	of	its	customers.

Once	an	inconsistency	has	been	detected,	it	is	sometimes	possible	to	correct
the	data.	A	product	code	may	have	“check”	digits,	or	it	may	be	possible	to
double-check	a	product	code	against	a	list	of	known	product	codes,	and	then

correct	the	code	if	it	is	incorrect,	but	close	to	a	known	code.	The	correction	of
an	inconsistency	requires	additional	or	redundant	information.

Example	2.6	(Inconsistent	Sea	Surface
Temperature).
This	example	illustrates	an	inconsistency	in	actual	time	series	data	that
measures	the	sea	surface	temperature	(SST)	at	various	points	on	the
ocean.	SST	data	was	originally	collected	using	ocean-based
measurements	from	ships	or	buoys,	but	more	recently,	satellites	have
been	used	to	gather	the	data.	To	create	a	long-term	data	set,	both	sources
of	data	must	be	used.	However,	because	the	data	comes	from	different
sources,	the	two	parts	of	the	data	are	subtly	different.	This	discrepancy	is
visually	displayed	in	Figure	2.7 ,	which	shows	the	correlation	of	SST
values	between	pairs	of	years.	If	a	pair	of	years	has	a	positive	correlation,
then	the	location	corresponding	to	the	pair	of	years	is	colored	white;
otherwise	it	is	colored	black.	(Seasonal	variations	were	removed	from	the
data	since,	otherwise,	all	the	years	would	be	highly	correlated.)	There	is	a
distinct	change	in	behavior	where	the	data	has	been	put	together	in	1983.
Years	within	each	of	the	two	groups,	1958–1982	and	1983–1999,	tend	to
have	a	positive	correlation	with	one	another,	but	a	negative	correlation	with
years	in	the	other	group.	This	does	not	mean	that	this	data	should	not	be
used,	only	that	the	analyst	should	consider	the	potential	impact	of	such
discrepancies	on	the	data	mining	analysis.

Figure	2.7.
Correlation	of	SST	data	between	pairs	of	years.	White	areas	indicate
positive	correlation.	Black	areas	indicate	negative	correlation.

Duplicate	Data
A	data	set	can	include	data	objects	that	are	duplicates,	or	almost	duplicates,
of	one	another.	Many	people	receive	duplicate	mailings	because	they	appear
in	a	database	multiple	times	under	slightly	different	names.	To	detect	and
eliminate	such	duplicates,	two	main	issues	must	be	addressed.	First,	if	there
are	two	objects	that	actually	represent	a	single	object,	then	one	or	more
values	of	corresponding	attributes	are	usually	different,	and	these	inconsistent
values	must	be	resolved.	Second,	care	needs	to	be	taken	to	avoid
accidentally	combining	data	objects	that	are	similar,	but	not	duplicates,	such

as	two	distinct	people	with	identical	names.	The	term	deduplication	is	often
used	to	refer	to	the	process	of	dealing	with	these	issues.

In	some	cases,	two	or	more	objects	are	identical	with	respect	to	the	attributes
measured	by	the	database,	but	they	still	represent	different	objects.	Here,	the
duplicates	are	legitimate,	but	can	still	cause	problems	for	some	algorithms	if
the	possibility	of	identical	objects	is	not	specifically	accounted	for	in	their
design.	An	example	of	this	is	given	in	Exercise	13 	on	page	108.

2.2.2	Issues	Related	to	Applications

Data	quality	issues	can	also	be	considered	from	an	application	viewpoint	as
expressed	by	the	statement	“data	is	of	high	quality	if	it	is	suitable	for	its
intended	use.”	This	approach	to	data	quality	has	proven	quite	useful,
particularly	in	business	and	industry.	A	similar	viewpoint	is	also	present	in
statistics	and	the	experimental	sciences,	with	their	emphasis	on	the	careful
design	of	experiments	to	collect	the	data	relevant	to	a	specific	hypothesis.	As
with	quality	issues	at	the	measurement	and	data	collection	level,	many	issues
are	specific	to	particular	applications	and	fields.	Again,	we	consider	only	a	few
of	the	general	issues.

Timeliness

Some	data	starts	to	age	as	soon	as	it	has	been	collected.	In	particular,	if	the
data	provides	a	snapshot	of	some	ongoing	phenomenon	or	process,	such	as
the	purchasing	behavior	of	customers	or	web	browsing	patterns,	then	this
snapshot	represents	reality	for	only	a	limited	time.	If	the	data	is	out	of	date,
then	so	are	the	models	and	patterns	that	are	based	on	it.

Relevance

The	available	data	must	contain	the	information	necessary	for	the	application.
Consider	the	task	of	building	a	model	that	predicts	the	accident	rate	for
drivers.	If	information	about	the	age	and	gender	of	the	driver	is	omitted,	then	it
is	likely	that	the	model	will	have	limited	accuracy	unless	this	information	is
indirectly	available	through	other	attributes.

Making	sure	that	the	objects	in	a	data	set	are	relevant	is	also	challenging.	A
common	problem	is	sampling	bias,	which	occurs	when	a	sample	does	not
contain	different	types	of	objects	in	proportion	to	their	actual	occurrence	in	the
population.	For	example,	survey	data	describes	only	those	who	respond	to	the
survey.	(Other	aspects	of	sampling	are	discussed	further	in	Section	2.3.2 .)
Because	the	results	of	a	data	analysis	can	reflect	only	the	data	that	is	present,
sampling	bias	will	typically	lead	to	erroneous	results	when	applied	to	the
broader	population.

Knowledge	about	the	Data

Ideally,	data	sets	are	accompanied	by	documentation	that	describes	different
aspects	of	the	data;	the	quality	of	this	documentation	can	either	aid	or	hinder
the	subsequent	analysis.	For	example,	if	the	documentation	identifies	several
attributes	as	being	strongly	related,	these	attributes	are	likely	to	provide	highly
redundant	information,	and	we	usually	decide	to	keep	just	one.	(Consider
sales	tax	and	purchase	price.)	If	the	documentation	is	poor,	however,	and	fails
to	tell	us,	for	example,	that	the	missing	values	for	a	particular	field	are
indicated	with	a	-9999,	then	our	analysis	of	the	data	may	be	faulty.	Other
important	characteristics	are	the	precision	of	the	data,	the	type	of	features
(nominal,	ordinal,	interval,	ratio),	the	scale	of	measurement	(e.g.,	meters	or
feet	for	length),	and	the	origin	of	the	data.

2.3	Data	Preprocessing
In	this	section,	we	consider	which	preprocessing	steps	should	be	applied	to
make	the	data	more	suitable	for	data	mining.	Data	preprocessing	is	a	broad
area	and	consists	of	a	number	of	different	strategies	and	techniques	that	are
interrelated	in	complex	ways.	We	will	present	some	of	the	most	important
ideas	and	approaches,	and	try	to	point	out	the	interrelationships	among	them.
Specifically,	we	will	discuss	the	following	topics:

Aggregation
Sampling
Dimensionality	reduction
Feature	subset	selection
Feature	creation
Discretization	and	binarization
Variable	transformation

Roughly	speaking,	these	topics	fall	into	two	categories:	selecting	data	objects
and	attributes	for	the	analysis	or	for	creating/changing	the	attributes.	In	both
cases,	the	goal	is	to	improve	the	data	mining	analysis	with	respect	to	time,
cost,	and	quality.	Details	are	provided	in	the	following	sections.

A	quick	note	about	terminology:	In	the	following,	we	sometimes	use	synonyms
for	attribute,	such	as	feature	or	variable,	in	order	to	follow	common	usage.

2.3.1	Aggregation

Sometimes	“less	is	more,”	and	this	is	the	case	with	aggregation	,	the
combining	of	two	or	more	objects	into	a	single	object.	Consider	a	data	set
consisting	of	transactions	(data	objects)	recording	the	daily	sales	of	products
in	various	store	locations	(Minneapolis,	Chicago,	Paris,	…)	for	different	days
over	the	course	of	a	year.	See	Table	2.4 .	One	way	to	aggregate
transactions	for	this	data	set	is	to	replace	all	the	transactions	of	a	single	store
with	a	single	storewide	transaction.	This	reduces	the	hundreds	or	thousands
of	transactions	that	occur	daily	at	a	specific	store	to	a	single	daily	transaction,
and	the	number	of	data	objects	per	day	is	reduced	to	the	number	of	stores.

Table	2.4.	Data	set	containing	information	about	customer	purchases.

Transaction	ID Item Store	Location Date Price …

⋮ ⋮ ⋮ ⋮ ⋮

101123 Watch Chicago 09/06/04 $25.99 …

101123 Battery Chicago 09/06/04 $5.99 …

101124 Shoes Minneapolis 09/06/04 $75.00 …

An	obvious	issue	is	how	an	aggregate	transaction	is	created;	i.e.,	how	the
values	of	each	attribute	are	combined	across	all	the	records	corresponding	to
a	particular	location	to	create	the	aggregate	transaction	that	represents	the
sales	of	a	single	store	or	date.	Quantitative	attributes,	such	as	price,	are
typically	aggregated	by	taking	a	sum	or	an	average.	A	qualitative	attribute,
such	as	item,	can	either	be	omitted	or	summarized	in	terms	of	a	higher	level
category,	e.g.,	televisions	versus	electronics.

The	data	in	Table	2.4 	can	also	be	viewed	as	a	multidimensional	array,
where	each	attribute	is	a	dimension.	From	this	viewpoint,	aggregation	is	the
process	of	eliminating	attributes,	such	as	the	type	of	item,	or	reducing	the

number	of	values	for	a	particular	attribute;	e.g.,	reducing	the	possible	values
for	date	from	365	days	to	12	months.	This	type	of	aggregation	is	commonly
used	in	Online	Analytical	Processing	(OLAP).	References	to	OLAP	are	given
in	the	bibliographic	Notes.

There	are	several	motivations	for	aggregation.	First,	the	smaller	data	sets
resulting	from	data	reduction	require	less	memory	and	processing	time,	and
hence,	aggregation	often	enables	the	use	of	more	expensive	data	mining
algorithms.	Second,	aggregation	can	act	as	a	change	of	scope	or	scale	by
providing	a	high-level	view	of	the	data	instead	of	a	low-level	view.	In	the
previous	example,	aggregating	over	store	locations	and	months	gives	us	a
monthly,	per	store	view	of	the	data	instead	of	a	daily,	per	item	view.	Finally,	the
behavior	of	groups	of	objects	or	attributes	is	often	more	stable	than	that	of
individual	objects	or	attributes.	This	statement	reflects	the	statistical	fact	that
aggregate	quantities,	such	as	averages	or	totals,	have	less	variability	than	the
individual	values	being	aggregated.	For	totals,	the	actual	amount	of	variation
is	larger	than	that	of	individual	objects	(on	average),	but	the	percentage	of	the
variation	is	smaller,	while	for	means,	the	actual	amount	of	variation	is	less
than	that	of	individual	objects	(on	average).	A	disadvantage	of	aggregation	is
the	potential	loss	of	interesting	details.	In	the	store	example,	aggregating	over
months	loses	information	about	which	day	of	the	week	has	the	highest	sales.

Example	2.7	(Australian	Precipitation).
This	example	is	based	on	precipitation	in	Australia	from	the	period	1982–
1993.	Figure	2.8(a) 	shows	a	histogram	for	the	standard	deviation	of
average	monthly	precipitation	for	 	by	 	grid	cells	in	Australia,
while	Figure	2.8(b) 	shows	a	histogram	for	the	standard	deviation	of	the
average	yearly	precipitation	for	the	same	locations.	The	average	yearly
precipitation	has	less	variability	than	the	average	monthly	precipitation.	All

3,030	0.5° 0.5°

precipitation	measurements	(and	their	standard	deviations)	are	in
centimeters.

Figure	2.8.
Histograms	of	standard	deviation	for	monthly	and	yearly	precipitation	in
Australia	for	the	period	1982–1993.

2.3.2	Sampling

Sampling	is	a	commonly	used	approach	for	selecting	a	subset	of	the	data
objects	to	be	analyzed.	In	statistics,	it	has	long	been	used	for	both	the
preliminary	investigation	of	the	data	and	the	final	data	analysis.	Sampling	can
also	be	very	useful	in	data	mining.	However,	the	motivations	for	sampling	in
statistics	and	data	mining	are	often	different.	Statisticians	use	sampling
because	obtaining	the	entire	set	of	data	of	interest	is	too	expensive	or	time
consuming,	while	data	miners	usually	sample	because	it	is	too
computationally	expensive	in	terms	of	the	memory	or	time	required	to	process

all	the	data.	In	some	cases,	using	a	sampling	algorithm	can	reduce	the	data
size	to	the	point	where	a	better,	but	more	computationally	expensive	algorithm
can	be	used.

The	key	principle	for	effective	sampling	is	the	following:	Using	a	sample	will
work	almost	as	well	as	using	the	entire	data	set	if	the	sample	is
representative.	In	turn,	a	sample	is	representative	if	it	has	approximately	the
same	property	(of	interest)	as	the	original	set	of	data.	If	the	mean	(average)	of
the	data	objects	is	the	property	of	interest,	then	a	sample	is	representative	if	it
has	a	mean	that	is	close	to	that	of	the	original	data.	Because	sampling	is	a
statistical	process,	the	representativeness	of	any	particular	sample	will	vary,
and	the	best	that	we	can	do	is	choose	a	sampling	scheme	that	guarantees	a
high	probability	of	getting	a	representative	sample.	As	discussed	next,	this
involves	choosing	the	appropriate	sample	size	and	sampling	technique.

Sampling	Approaches
There	are	many	sampling	techniques,	but	only	a	few	of	the	most	basic	ones
and	their	variations	will	be	covered	here.	The	simplest	type	of	sampling	is
simple	random	sampling.	For	this	type	of	sampling,	there	is	an	equal
probability	of	selecting	any	particular	object.	There	are	two	variations	on
random	sampling	(and	other	sampling	techniques	as	well):	(1)	sampling
without	replacement	—as	each	object	is	selected,	it	is	removed	from	the	set
of	all	objects	that	together	constitute	the	population	,	and	(2)	sampling	with
replacement	—objects	are	not	removed	from	the	population	as	they	are
selected	for	the	sample.	In	sampling	with	replacement,	the	same	object	can
be	picked	more	than	once.	The	samples	produced	by	the	two	methods	are	not
much	different	when	samples	are	relatively	small	compared	to	the	data	set
size,	but	sampling	with	replacement	is	simpler	to	analyze	because	the
probability	of	selecting	any	object	remains	constant	during	the	sampling
process.

When	the	population	consists	of	different	types	of	objects,	with	widely	different
numbers	of	objects,	simple	random	sampling	can	fail	to	adequately	represent
those	types	of	objects	that	are	less	frequent.	This	can	cause	problems	when
the	analysis	requires	proper	representation	of	all	object	types.	For	example,
when	building	classification	models	for	rare	classes,	it	is	critical	that	the	rare
classes	be	adequately	represented	in	the	sample.	Hence,	a	sampling	scheme
that	can	accommodate	differing	frequencies	for	the	object	types	of	interest	is
needed.	Stratified	sampling	,	which	starts	with	prespecified	groups	of
objects,	is	such	an	approach.	In	the	simplest	version,	equal	numbers	of
objects	are	drawn	from	each	group	even	though	the	groups	are	of	different
sizes.	In	another	variation,	the	number	of	objects	drawn	from	each	group	is
proportional	to	the	size	of	that	group.

Example	2.8	(Sampling	and	Loss	of	Information).
Once	a	sampling	technique	has	been	selected,	it	is	still	necessary	to
choose	the	sample	size.	Larger	sample	sizes	increase	the	probability	that
a	sample	will	be	representative,	but	they	also	eliminate	much	of	the
advantage	of	sampling.	Conversely,	with	smaller	sample	sizes,	patterns
can	be	missed	or	erroneous	patterns	can	be	detected.	Figure	2.9(a)
shows	a	data	set	that	contains	8000	two-dimensional	points,	while	Figures
2.9(b) 	and	2.9(c) 	show	samples	from	this	data	set	of	size	2000	and
500,	respectively.	Although	most	of	the	structure	of	this	data	set	is	present
in	the	sample	of	2000	points,	much	of	the	structure	is	missing	in	the
sample	of	500	points.

Figure	2.9.
Example	of	the	loss	of	structure	with	sampling.

Example	2.9	(Determining	the	Proper	Sample
Size).
To	illustrate	that	determining	the	proper	sample	size	requires	a	methodical
approach,	consider	the	following	task.

Given	a	set	of	data	consisting	of	a	small	number	of	almost	equalsized	groups,	find	at	least	one

representative	point	for	each	of	the	groups.	Assume	that	the	objects	in	each	group	are	highly

similar	to	each	other,	but	not	very	similar	to	objects	in	different	groups.	Figure	2.10(a) 	shows

an	idealized	set	of	clusters	(groups)	from	which	these	points	might	be	drawn.

Figure	2.10.
Finding	representative	points	from	10	groups.

This	problem	can	be	efficiently	solved	using	sampling.	One	approach	is	to
take	a	small	sample	of	data	points,	compute	the	pairwise	similarities
between	points,	and	then	form	groups	of	points	that	are	highly	similar.	The
desired	set	of	representative	points	is	then	obtained	by	taking	one	point
from	each	of	these	groups.	To	follow	this	approach,	however,	we	need	to
determine	a	sample	size	that	would	guarantee,	with	a	high	probability,	the
desired	outcome;	that	is,	that	at	least	one	point	will	be	obtained	from	each
cluster.	Figure	2.10(b) 	shows	the	probability	of	getting	one	object	from
each	of	the	10	groups	as	the	sample	size	runs	from	10	to	60.	Interestingly,
with	a	sample	size	of	20,	there	is	little	chance	(20%)	of	getting	a	sample
that	includes	all	10	clusters.	Even	with	a	sample	size	of	30,	there	is	still	a
moderate	chance	(almost	40%)	of	getting	a	sample	that	doesn’t	contain
objects	from	all	10	clusters.	This	issue	is	further	explored	in	the	context	of
clustering	by	Exercise	4 	on	page	603.

Progressive	Sampling
The	proper	sample	size	can	be	difficult	to	determine,	so	adaptive	or
progressive	sampling	schemes	are	sometimes	used.	These	approaches
start	with	a	small	sample,	and	then	increase	the	sample	size	until	a	sample	of
sufficient	size	has	been	obtained.	While	this	technique	eliminates	the	need	to
determine	the	correct	sample	size	initially,	it	requires	that	there	be	a	way	to
evaluate	the	sample	to	judge	if	it	is	large	enough.

Suppose,	for	instance,	that	progressive	sampling	is	used	to	learn	a	predictive
model.	Although	the	accuracy	of	predictive	models	increases	as	the	sample
size	increases,	at	some	point	the	increase	in	accuracy	levels	off.	We	want	to
stop	increasing	the	sample	size	at	this	leveling-off	point.	By	keeping	track	of
the	change	in	accuracy	of	the	model	as	we	take	progressively	larger	samples,
and	by	taking	other	samples	close	to	the	size	of	the	current	one,	we	can	get
an	estimate	of	how	close	we	are	to	this	leveling-off	point,	and	thus,	stop
sampling.

2.3.3	Dimensionality	Reduction

Data	sets	can	have	a	large	number	of	features.	Consider	a	set	of	documents,
where	each	document	is	represented	by	a	vector	whose	components	are	the
frequencies	with	which	each	word	occurs	in	the	document.	In	such	cases,
there	are	typically	thousands	or	tens	of	thousands	of	attributes	(components),
one	for	each	word	in	the	vocabulary.	As	another	example,	consider	a	set	of
time	series	consisting	of	the	daily	closing	price	of	various	stocks	over	a	period
of	30	years.	In	this	case,	the	attributes,	which	are	the	prices	on	specific	days,
again	number	in	the	thousands.

There	are	a	variety	of	benefits	to	dimensionality	reduction.	A	key	benefit	is	that
many	data	mining	algorithms	work	better	if	the	dimensionality—the	number	of
attributes	in	the	data—is	lower.	This	is	partly	because	dimensionality	reduction
can	eliminate	irrelevant	features	and	reduce	noise	and	partly	because	of	the
curse	of	dimensionality,	which	is	explained	below.	Another	benefit	is	that	a
reduction	of	dimensionality	can	lead	to	a	more	understandable	model	because
the	model	usually	involves	fewer	attributes.	Also,	dimensionality	reduction
may	allow	the	data	to	be	more	easily	visualized.	Even	if	dimensionality
reduction	doesn’t	reduce	the	data	to	two	or	three	dimensions,	data	is	often
visualized	by	looking	at	pairs	or	triplets	of	attributes,	and	the	number	of	such
combinations	is	greatly	reduced.	Finally,	the	amount	of	time	and	memory
required	by	the	data	mining	algorithm	is	reduced	with	a	reduction	in
dimensionality.

The	term	dimensionality	reduction	is	often	reserved	for	those	techniques	that
reduce	the	dimensionality	of	a	data	set	by	creating	new	attributes	that	are	a
combination	of	the	old	attributes.	The	reduction	of	dimensionality	by	selecting
attributes	that	are	a	subset	of	the	old	is	known	as	feature	subset	selection	or
feature	selection.	It	will	be	discussed	in	Section	2.3.4 .

In	the	remainder	of	this	section,	we	briefly	introduce	two	important	topics:	the
curse	of	dimensionality	and	dimensionality	reduction	techniques	based	on
linear	algebra	approaches	such	as	principal	components	analysis	(PCA).
More	details	on	dimensionality	reduction	can	be	found	in	Appendix	B.

The	Curse	of	Dimensionality
The	curse	of	dimensionality	refers	to	the	phenomenon	that	many	types	of	data
analysis	become	significantly	harder	as	the	dimensionality	of	the	data
increases.	Specifically,	as	dimensionality	increases,	the	data	becomes
increasingly	sparse	in	the	space	that	it	occupies.	Thus,	the	data	objects	we

observe	are	quite	possibly	not	a	representative	sample	of	all	possible	objects.
For	classification,	this	can	mean	that	there	are	not	enough	data	objects	to
allow	the	creation	of	a	model	that	reliably	assigns	a	class	to	all	possible
objects.	For	clustering,	the	differences	in	density	and	in	the	distances	between
points,	which	are	critical	for	clustering,	become	less	meaningful.	(This	is
discussed	further	in	Sections	8.1.2,	8.4.6,	and	8.4.8.)	As	a	result,	many
clustering	and	classification	algorithms	(and	other	data	analysis	algorithms)
have	trouble	with	high-dimensional	data	leading	to	reduced	classification
accuracy	and	poor	quality	clusters.

Linear	Algebra	Techniques	for	Dimensionality
Reduction
Some	of	the	most	common	approaches	for	dimensionality	reduction,
particularly	for	continuous	data,	use	techniques	from	linear	algebra	to	project
the	data	from	a	high-dimensional	space	into	a	lower-dimensional	space.
Principal	Components	Analysis	(PCA)	is	a	linear	algebra	technique	for
continuous	attributes	that	finds	new	attributes	(principal	components)	that	(1)
are	linear	combinations	of	the	original	attributes,	(2)	are	orthogonal
(perpendicular)	to	each	other,	and	(3)	capture	the	maximum	amount	of
variation	in	the	data.	For	example,	the	first	two	principal	components	capture
as	much	of	the	variation	in	the	data	as	is	possible	with	two	orthogonal
attributes	that	are	linear	combinations	of	the	original	attributes.	Singular
Value	Decomposition	(SVD)	is	a	linear	algebra	technique	that	is	related	to
PCA	and	is	also	commonly	used	for	dimensionality	reduction.	For	additional
details,	see	Appendices	A	and	B.

2.3.4	Feature	Subset	Selection

Another	way	to	reduce	the	dimensionality	is	to	use	only	a	subset	of	the
features.	While	it	might	seem	that	such	an	approach	would	lose	information,
this	is	not	the	case	if	redundant	and	irrelevant	features	are	present.
Redundant	features	duplicate	much	or	all	of	the	information	contained	in	one
or	more	other	attributes.	For	example,	the	purchase	price	of	a	product	and	the
amount	of	sales	tax	paid	contain	much	of	the	same	information.	Irrelevant
features	contain	almost	no	useful	information	for	the	data	mining	task	at
hand.	For	instance,	students’	ID	numbers	are	irrelevant	to	the	task	of
predicting	students’	grade	point	averages.	Redundant	and	irrelevant	features
can	reduce	classification	accuracy	and	the	quality	of	the	clusters	that	are
found.

While	some	irrelevant	and	redundant	attributes	can	be	eliminated	immediately
by	using	common	sense	or	domain	knowledge,	selecting	the	best	subset	of
features	frequently	requires	a	systematic	approach.	The	ideal	approach	to
feature	selection	is	to	try	all	possible	subsets	of	features	as	input	to	the	data
mining	algorithm	of	interest,	and	then	take	the	subset	that	produces	the	best
results.	This	method	has	the	advantage	of	reflecting	the	objective	and	bias	of
the	data	mining	algorithm	that	will	eventually	be	used.	Unfortunately,	since	the
number	of	subsets	involving	n	attributes	is	2 ,	such	an	approach	is	impractical

in	most	situations	and	alternative	strategies	are	needed.	There	are	three
standard	approaches	to	feature	selection:	embedded,	filter,	and	wrapper.

Embedded	approaches

Feature	selection	occurs	naturally	as	part	of	the	data	mining	algorithm.
Specifically,	during	the	operation	of	the	data	mining	algorithm,	the	algorithm
itself	decides	which	attributes	to	use	and	which	to	ignore.	Algorithms	for
building	decision	tree	classifiers,	which	are	discussed	in	Chapter	3 ,	often
operate	in	this	manner.

n

Filter	approaches

Features	are	selected	before	the	data	mining	algorithm	is	run,	using	some
approach	that	is	independent	of	the	data	mining	task.	For	example,	we	might
select	sets	of	attributes	whose	pairwise	correlation	is	as	low	as	possible	so
that	the	attributes	are	non-redundant.

Wrapper	approaches

These	methods	use	the	target	data	mining	algorithm	as	a	black	box	to	find	the
best	subset	of	attributes,	in	a	way	similar	to	that	of	the	ideal	algorithm
described	above,	but	typically	without	enumerating	all	possible	subsets.

Because	the	embedded	approaches	are	algorithm-specific,	only	the	filter	and
wrapper	approaches	will	be	discussed	further	here.

An	Architecture	for	Feature	Subset	Selection
It	is	possible	to	encompass	both	the	filter	and	wrapper	approaches	within	a
common	architecture.	The	feature	selection	process	is	viewed	as	consisting	of
four	parts:	a	measure	for	evaluating	a	subset,	a	search	strategy	that	controls
the	generation	of	a	new	subset	of	features,	a	stopping	criterion,	and	a
validation	procedure.	Filter	methods	and	wrapper	methods	differ	only	in	the
way	in	which	they	evaluate	a	subset	of	features.	For	a	wrapper	method,
subset	evaluation	uses	the	target	data	mining	algorithm,	while	for	a	filter
approach,	the	evaluation	technique	is	distinct	from	the	target	data	mining
algorithm.	The	following	discussion	provides	some	details	of	this	approach,
which	is	summarized	in	Figure	2.11 .

Figure	2.11.
Flowchart	of	a	feature	subset	selection	process.

Conceptually,	feature	subset	selection	is	a	search	over	all	possible	subsets	of
features.	Many	different	types	of	search	strategies	can	be	used,	but	the
search	strategy	should	be	computationally	inexpensive	and	should	find
optimal	or	near	optimal	sets	of	features.	It	is	usually	not	possible	to	satisfy
both	requirements,	and	thus,	trade-offs	are	necessary.

An	integral	part	of	the	search	is	an	evaluation	step	to	judge	how	the	current
subset	of	features	compares	to	others	that	have	been	considered.	This
requires	an	evaluation	measure	that	attempts	to	determine	the	goodness	of	a
subset	of	attributes	with	respect	to	a	particular	data	mining	task,	such	as
classification	or	clustering.	For	the	filter	approach,	such	measures	attempt	to
predict	how	well	the	actual	data	mining	algorithm	will	perform	on	a	given	set	of
attributes.	For	the	wrapper	approach,	where	evaluation	consists	of	actually
running	the	target	data	mining	algorithm,	the	subset	evaluation	function	is
simply	the	criterion	normally	used	to	measure	the	result	of	the	data	mining.

Because	the	number	of	subsets	can	be	enormous	and	it	is	impractical	to
examine	them	all,	some	sort	of	stopping	criterion	is	necessary.	This	strategy	is
usually	based	on	one	or	more	conditions	involving	the	following:	the	number
of	iterations,	whether	the	value	of	the	subset	evaluation	measure	is	optimal	or
exceeds	a	certain	threshold,	whether	a	subset	of	a	certain	size	has	been
obtained,	and	whether	any	improvement	can	be	achieved	by	the	options
available	to	the	search	strategy.

Finally,	once	a	subset	of	features	has	been	selected,	the	results	of	the	target
data	mining	algorithm	on	the	selected	subset	should	be	validated.	A
straightforward	validation	approach	is	to	run	the	algorithm	with	the	full	set	of
features	and	compare	the	full	results	to	results	obtained	using	the	subset	of
features.	Hopefully,	the	subset	of	features	will	produce	results	that	are	better
than	or	almost	as	good	as	those	produced	when	using	all	features.	Another
validation	approach	is	to	use	a	number	of	different	feature	selection
algorithms	to	obtain	subsets	of	features	and	then	compare	the	results	of
running	the	data	mining	algorithm	on	each	subset.

Feature	Weighting
Feature	weighting	is	an	alternative	to	keeping	or	eliminating	features.	More
important	features	are	assigned	a	higher	weight,	while	less	important	features
are	given	a	lower	weight.	These	weights	are	sometimes	assigned	based	on
domain	knowledge	about	the	relative	importance	of	features.	Alternatively,
they	can	sometimes	be	determined	automatically.	For	example,	some
classification	schemes,	such	as	support	vector	machines	(Chapter	4),
produce	classification	models	in	which	each	feature	is	given	a	weight.
Features	with	larger	weights	play	a	more	important	role	in	the	model.	The
normalization	of	objects	that	takes	place	when	computing	the	cosine	similarity
(Section	2.4.5)	can	also	be	regarded	as	a	type	of	feature	weighting.

2.3.5	Feature	Creation

It	is	frequently	possible	to	create,	from	the	original	attributes,	a	new	set	of
attributes	that	captures	the	important	information	in	a	data	set	much	more
effectively.	Furthermore,	the	number	of	new	attributes	can	be	smaller	than	the
number	of	original	attributes,	allowing	us	to	reap	all	the	previously	described
benefits	of	dimensionality	reduction.	Two	related	methodologies	for	creating
new	attributes	are	described	next:	feature	extraction	and	mapping	the	data	to
a	new	space.

Feature	Extraction
The	creation	of	a	new	set	of	features	from	the	original	raw	data	is	known	as
feature	extraction.	Consider	a	set	of	photographs,	where	each	photograph	is
to	be	classified	according	to	whether	it	contains	a	human	face.	The	raw	data
is	a	set	of	pixels,	and	as	such,	is	not	suitable	for	many	types	of	classification
algorithms.	However,	if	the	data	is	processed	to	provide	higher-level	features,
such	as	the	presence	or	absence	of	certain	types	of	edges	and	areas	that	are
highly	correlated	with	the	presence	of	human	faces,	then	a	much	broader	set
of	classification	techniques	can	be	applied	to	this	problem.

Unfortunately,	in	the	sense	in	which	it	is	most	commonly	used,	feature
extraction	is	highly	domain-specific.	For	a	particular	field,	such	as	image
processing,	various	features	and	the	techniques	to	extract	them	have	been
developed	over	a	period	of	time,	and	often	these	techniques	have	limited
applicability	to	other	fields.	Consequently,	whenever	data	mining	is	applied	to
a	relatively	new	area,	a	key	task	is	the	development	of	new	features	and
feature	extraction	methods.

Although	feature	extraction	is	often	complicated,	Example	2.10 	illustrates
that	it	can	be	relatively	straightforward.

Example	2.10	(Density).
Consider	a	data	set	consisting	of	information	about	historical	artifacts,
which,	along	with	other	information,	contains	the	volume	and	mass	of	each
artifact.	For	simplicity,	assume	that	these	artifacts	are	made	of	a	small
number	of	materials	(wood,	clay,	bronze,	gold)	and	that	we	want	to	classify
the	artifacts	with	respect	to	the	material	of	which	they	are	made.	In	this
case,	a	density	feature	constructed	from	the	mass	and	volume	features,
i.e.,	density	=mass/volume	,	would	most	directly	yield	an	accurate
classification.	Although	there	have	been	some	attempts	to	automatically
perform	such	simple	feature	extraction	by	exploring	basic	mathematical
combinations	of	existing	attributes,	the	most	common	approach	is	to
construct	features	using	domain	expertise.

Mapping	the	Data	to	a	New	Space
A	totally	different	view	of	the	data	can	reveal	important	and	interesting
features.	Consider,	for	example,	time	series	data,	which	often	contains
periodic	patterns.	If	there	is	only	a	single	periodic	pattern	and	not	much	noise,
then	the	pattern	is	easily	detected.	If,	on	the	other	hand,	there	are	a	number	of
periodic	patterns	and	a	significant	amount	of	noise,	then	these	patterns	are
hard	to	detect.	Such	patterns	can,	nonetheless,	often	be	detected	by	applying
a	Fourier	transform	to	the	time	series	in	order	to	change	to	a	representation
in	which	frequency	information	is	explicit.	In	Example	2.11 ,	it	will	not	be
necessary	to	know	the	details	of	the	Fourier	transform.	It	is	enough	to	know
that,	for	each	time	series,	the	Fourier	transform	produces	a	new	data	object
whose	attributes	are	related	to	frequencies.

Example	2.11	(Fourier	Analysis).
The	time	series	presented	in	Figure	2.12(b) 	is	the	sum	of	three	other
time	series,	two	of	which	are	shown	in	Figure	2.12(a) 	and	have
frequencies	of	7	and	17	cycles	per	second,	respectively.	The	third	time
series	is	random	noise.	Figure	2.12(c) 	shows	the	power	spectrum	that
can	be	computed	after	applying	a	Fourier	transform	to	the	original	time
series.	(Informally,	the	power	spectrum	is	proportional	to	the	square	of
each	frequency	attribute.)	In	spite	of	the	noise,	there	are	two	peaks	that
correspond	to	the	periods	of	the	two	original,	non-noisy	time	series.	Again,
the	main	point	is	that	better	features	can	reveal	important	aspects	of	the
data.

Figure	2.12.
Application	of	the	Fourier	transform	to	identify	the	underlying	frequencies
in	time	series	data.

Many	other	sorts	of	transformations	are	also	possible.	Besides	the	Fourier
transform,	the	wavelet	transform	has	also	proven	very	useful	for	time	series
and	other	types	of	data.

2.3.6	Discretization	and	Binarization

Some	data	mining	algorithms,	especially	certain	classification	algorithms,
require	that	the	data	be	in	the	form	of	categorical	attributes.	Algorithms	that
find	association	patterns	require	that	the	data	be	in	the	form	of	binary
attributes.	Thus,	it	is	often	necessary	to	transform	a	continuous	attribute	into	a
categorical	attribute	(discretization),	and	both	continuous	and	discrete
attributes	may	need	to	be	transformed	into	one	or	more	binary	attributes
(binarization).	Additionally,	if	a	categorical	attribute	has	a	large	number	of
values	(categories),	or	some	values	occur	infrequently,	then	it	can	be
beneficial	for	certain	data	mining	tasks	to	reduce	the	number	of	categories	by
combining	some	of	the	values.

As	with	feature	selection,	the	best	discretization	or	binarization	approach	is
the	one	that	“produces	the	best	result	for	the	data	mining	algorithm	that	will	be
used	to	analyze	the	data.”	It	is	typically	not	practical	to	apply	such	a	criterion
directly.	Consequently,	discretization	or	binarization	is	performed	in	a	way	that
satisfies	a	criterion	that	is	thought	to	have	a	relationship	to	good	performance
for	the	data	mining	task	being	considered.	In	general,	the	best	discretization
depends	on	the	algorithm	being	used,	as	well	as	the	other	attributes	being
considered.	Typically,	however,	the	discretization	of	each	attribute	is
considered	in	isolation.

Binarization
A	simple	technique	to	binarize	a	categorical	attribute	is	the	following:	If	there
are	m	categorical	values,	then	uniquely	assign	each	original	value	to	an
integer	in	the	interval	 	If	the	attribute	is	ordinal,	then	order	must	be
maintained	by	the	assignment.	(Note	that	even	if	the	attribute	is	originally
represented	using	integers,	this	process	is	necessary	if	the	integers	are	not	in

[0,	m−1].

the	interval)	Next,	convert	each	of	these	m	integers	to	a	binary
number.	Since	 	binary	digits	are	required	to	represent	these
integers,	represent	these	binary	numbers	using	n	binary	attributes.	To
illustrate,	a	categorical	variable	with	5	values	{awful,	poor,	OK,	good,	great}
would	require	three	binary	variables	 	and	 	The	conversion	is	shown
in	Table	2.5 .

Table	2.5.	Conversion	of	a	categorical	attribute	to	three	binary	attributes.

Categorical	Value Integer	Value

awful 0 0 0 0

poor 1 0 0 1

OK 2 0 1 0

good 3 0 1 1

great 4 1 0 0

Such	a	transformation	can	cause	complications,	such	as	creating	unintended
relationships	among	the	transformed	attributes.	For	example,	in	Table	2.5 ,
attributes	 	and	 	are	correlated	because	information	about	the	good	value
is	encoded	using	both	attributes.	Furthermore,	association	analysis	requires
asymmetric	binary	attributes,	where	only	the	presence	of	the	attribute

	is	important.	For	association	problems,	it	is	therefore	necessary	to
introduce	one	asymmetric	binary	attribute	for	each	categorical	value,	as
shown	in	Table	2.6 .	If	the	number	of	resulting	attributes	is	too	large,	then
the	techniques	described	in	the	following	sections	can	be	used	to	reduce	the
number	of	categorical	values	before	binarization.

Table	2.6.	Conversion	of	a	categorical	attribute	to	five	asymmetric	binary

[0,	m−1].
n=[log2(m)]

x1,	x2, x3.

x1 x2 x3

x2 x3

(value	=1).

attributes.

Categorical	Value Integer	Value

awful 0 1 0 0 0 0

poor 1 0 1 0 0 0

OK 2 0 0 1 0 0

good 3 0 0 0 1 0

great 4 0 0 0 0 1

Likewise,	for	association	problems,	it	can	be	necessary	to	replace	a	single
binary	attribute	with	two	asymmetric	binary	attributes.	Consider	a	binary
attribute	that	records	a	person’s	gender,	male	or	female.	For	traditional
association	rule	algorithms,	this	information	needs	to	be	transformed	into	two
asymmetric	binary	attributes,	one	that	is	a	1	only	when	the	person	is	male	and
one	that	is	a	1	only	when	the	person	is	female.	(For	asymmetric	binary
attributes,	the	information	representation	is	somewhat	inefficient	in	that	two
bits	of	storage	are	required	to	represent	each	bit	of	information.)

Discretization	of	Continuous	Attributes
Discretization	is	typically	applied	to	attributes	that	are	used	in	classification	or
association	analysis.	Transformation	of	a	continuous	attribute	to	a	categorical
attribute	involves	two	subtasks:	deciding	how	many	categories,n	,	to	have	and
determining	how	to	map	the	values	of	the	continuous	attribute	to	these
categories.	In	the	first	step,	after	the	values	of	the	continuous	attribute	are
sorted,	they	are	then	divided	into	n	intervals	by	specifying	 	split	points.	In
the	second,	rather	trivial	step,	all	the	values	in	one	interval	are	mapped	to	the
same	categorical	value.	Therefore,	the	problem	of	discretization	is	one	of

x1 x2 x3 x4 x5

n−1

deciding	how	many	split	points	to	choose	and	where	to	place	them.	The	result
can	be	represented	either	as	a	set	of	intervals	

	where	 	and	 	can	be	 	or	 	respectively,	or	equivalently,	as	a
series	of	inequalities	

Unsupervised	Discretization

A	basic	distinction	between	discretization	methods	for	classification	is	whether
class	information	is	used	(supervised)	or	not	(unsupervised).	If	class
information	is	not	used,	then	relatively	simple	approaches	are	common.	For
instance,	the	equal	width	approach	divides	the	range	of	the	attribute	into	a
user-specified	number	of	intervals	each	having	the	same	width.	Such	an
approach	can	be	badly	affected	by	outliers,	and	for	that	reason,	an	equal
frequency	(equal	depth)	approach,	which	tries	to	put	the	same	number	of
objects	into	each	interval,	is	often	preferred.	As	another	example	of
unsupervised	discretization,	a	clustering	method,	such	as	K-means	(see
Chapter	7),	can	also	be	used.	Finally,	visually	inspecting	the	data	can
sometimes	be	an	effective	approach.

Example	2.12	(Discretization	Techniques).
This	example	demonstrates	how	these	approaches	work	on	an	actual	data
set.	Figure	2.13(a) 	shows	data	points	belonging	to	four	different	groups,
along	with	two	outliers—the	large	dots	on	either	end.	The	techniques	of	the
previous	paragraph	were	applied	to	discretize	the	x	values	of	these	data
points	into	four	categorical	values.	(Points	in	the	data	set	have	a	random	y
component	to	make	it	easy	to	see	how	many	points	are	in	each	group.)
Visually	inspecting	the	data	works	quite	well,	but	is	not	automatic,	and
thus,	we	focus	on	the	other	three	approaches.	The	split	points	produced	by
the	techniques	equal	width,	equal	frequency,	and	K-means	are	shown	in

{(x0,	x1],	(x1,	x2],…,	(xn
−1,	xn)}, x0 xn +∞ −∞,

x0<x≤x1,	…,	xn−1<x<xn.

Figures	2.13(b) ,	2.13(c) ,	and	2.13(d) ,	respectively.	The	split	points
are	represented	as	dashed	lines.

Figure	2.13.
Different	discretization	techniques.

In	this	particular	example,	if	we	measure	the	performance	of	a
discretization	technique	by	the	extent	to	which	different	objects	that	clump
together	have	the	same	categorical	value,	then	K-means	performs	best,
followed	by	equal	frequency,	and	finally,	equal	width.	More	generally,	the
best	discretization	will	depend	on	the	application	and	often	involves
domain-specific	discretization.	For	example,	the	discretization	of	people
into	low	income,	middle	income,	and	high	income	is	based	on	economic
factors.

Supervised	Discretization

If	classification	is	our	application	and	class	labels	are	known	for	some	data
objects,	then	discretization	approaches	that	use	class	labels	often	produce
better	classification.	This	should	not	be	surprising,	since	an	interval
constructed	with	no	knowledge	of	class	labels	often	contains	a	mixture	of
class	labels.	A	conceptually	simple	approach	is	to	place	the	splits	in	a	way
that	maximizes	the	purity	of	the	intervals,	i.e.,	the	extent	to	which	an	interval
contains	a	single	class	label.	In	practice,	however,	such	an	approach	requires
potentially	arbitrary	decisions	about	the	purity	of	an	interval	and	the	minimum
size	of	an	interval.

To	overcome	such	concerns,	some	statistically	based	approaches	start	with
each	attribute	value	in	a	separate	interval	and	create	larger	intervals	by
merging	adjacent	intervals	that	are	similar	according	to	a	statistical	test.	An
alternative	to	this	bottom-up	approach	is	a	top-down	approach	that	starts	by
bisecting	the	initial	values	so	that	the	resulting	two	intervals	give	minimum
entropy.	This	technique	only	needs	to	consider	each	value	as	a	possible	split
point,	because	it	is	assumed	that	intervals	contain	ordered	sets	of	values.	The
splitting	process	is	then	repeated	with	another	interval,	typically	choosing	the
interval	with	the	worst	(highest)	entropy,	until	a	user-specified	number	of
intervals	is	reached,	or	a	stopping	criterion	is	satisfied.

Entropy-based	approaches	are	one	of	the	most	promising	approaches	to
discretization,	whether	bottom-up	or	top-down.	First,	it	is	necessary	to	define
entropy.	Let	k	be	the	number	of	different	class	labels,	m 	be	the	number	of

values	in	the	i 	interval	of	a	partition,	and	m 	be	the	number	of	values	of	class
j	in	interval	i.	Then	the	entropy	e 	of	the	i 	interval	is	given	by	the	equation

where	 	is	the	probability	(fraction	of	values)	of	class	j	in	the	
interval.	The	total	entropy,	e,	of	the	partition	is	the	weighted	average	of	the
individual	interval	entropies,	i.e.,

where	m	is	the	number	of	values,	 	is	the	fraction	of	values	in	the	
interval,	and	n	is	the	number	of	intervals.	Intuitively,	the	entropy	of	an	interval
is	a	measure	of	the	purity	of	an	interval.	If	an	interval	contains	only	values	of
one	class	(is	perfectly	pure),	then	the	entropy	is	0	and	it	contributes	nothing	to
the	overall	entropy.	If	the	classes	of	values	in	an	interval	occur	equally	often
(the	interval	is	as	impure	as	possible),	then	the	entropy	is	a	maximum.

Example	2.13	(Discretization	of	Two	Attributes).
The	top-down	method	based	on	entropy	was	used	to	independently
discretize	both	the	x	and	y	attributes	of	the	two-dimensional	data	shown	in
Figure	2.14 .	In	the	first	discretization,	shown	in	Figure	2.14(a) ,	the	x
and	y	attributes	were	both	split	into	three	intervals.	(The	dashed	lines
indicate	the	split	points.)	In	the	second	discretization,	shown	in	Figure
2.14(b) ,	the	x	and	y	attributes	were	both	split	into	five	intervals.

i

th
ij

i
th

ei=−∑j=1kpijlog2	pij,

pij=mij/mi ith

e=∑i=1nwiei,

wi=mi/m ith

Figure	2.14.
Discretizing	x	and	y	attributes	for	four	groups	(classes)	of	points.

This	simple	example	illustrates	two	aspects	of	discretization.	First,	in	two
dimensions,	the	classes	of	points	are	well	separated,	but	in	one	dimension,
this	is	not	so.	In	general,	discretizing	each	attribute	separately	often
guarantees	suboptimal	results.	Second,	five	intervals	work	better	than	three,
but	six	intervals	do	not	improve	the	discretization	much,	at	least	in	terms	of
entropy.	(Entropy	values	and	results	for	six	intervals	are	not	shown.)
Consequently,	it	is	desirable	to	have	a	stopping	criterion	that	automatically
finds	the	right	number	of	partitions.

Categorical	Attributes	with	Too	Many	Values
Categorical	attributes	can	sometimes	have	too	many	values.	If	the	categorical
attribute	is	an	ordinal	attribute,	then	techniques	similar	to	those	for	continuous
attributes	can	be	used	to	reduce	the	number	of	categories.	If	the	categorical
attribute	is	nominal,	however,	then	other	approaches	are	needed.	Consider	a

university	that	has	a	large	number	of	departments.	Consequently,	a
department	name	attribute	might	have	dozens	of	different	values.	In	this
situation,	we	could	use	our	knowledge	of	the	relationships	among	different
departments	to	combine	departments	into	larger	groups,	such	as	engineering,
social	sciences,	or	biological	sciences.	If	domain	knowledge	does	not	serve
as	a	useful	guide	or	such	an	approach	results	in	poor	classification
performance,	then	it	is	necessary	to	use	a	more	empirical	approach,	such	as
grouping	values	together	only	if	such	a	grouping	results	in	improved
classification	accuracy	or	achieves	some	other	data	mining	objective.

2.3.7	Variable	Transformation

A	variable	transformation	refers	to	a	transformation	that	is	applied	to	all	the
values	of	a	variable.	(We	use	the	term	variable	instead	of	attribute	to	adhere
to	common	usage,	although	we	will	also	refer	to	attribute	transformation	on
occasion.)	In	other	words,	for	each	object,	the	transformation	is	applied	to	the
value	of	the	variable	for	that	object.	For	example,	if	only	the	magnitude	of	a
variable	is	important,	then	the	values	of	the	variable	can	be	transformed	by
taking	the	absolute	value.	In	the	following	section,	we	discuss	two	important
types	of	variable	transformations:	simple	functional	transformations	and
normalization.

Simple	Functions
For	this	type	of	variable	transformation,	a	simple	mathematical	function	is
applied	to	each	value	individually.	If	x	is	a	variable,	then	examples	of	such
transformations	include	 	or	 	In	statistics,	variable
transformations,	especially	sqrt,	log,	and	1/x,	are	often	used	to	transform	data
that	does	not	have	a	Gaussian	(normal)	distribution	into	data	that	does.	While

xk,	log	x,	ex,	x,	1/x,	sin	x, |x|.

this	can	be	important,	other	reasons	often	take	precedence	in	data	mining.
Suppose	the	variable	of	interest	is	the	number	of	data	bytes	in	a	session,	and
the	number	of	bytes	ranges	from	1	to	1	billion.	This	is	a	huge	range,	and	it	can
be	advantageous	to	compress	it	by	using	a	log	 transformation.	In	this	case,
sessions	that	transferred	 	and	 	bytes	would	be	more	similar	to	each
other	than	sessions	that	transferred	10	and	1000	bytes	
For	some	applications,	such	as	network	intrusion	detection,	this	may	be	what
is	desired,	since	the	first	two	sessions	most	likely	represent	transfers	of	large
files,	while	the	latter	two	sessions	could	be	two	quite	distinct	types	of
sessions.

Variable	transformations	should	be	applied	with	caution	because	they	change
the	nature	of	the	data.	While	this	is	what	is	desired,	there	can	be	problems	if
the	nature	of	the	transformation	is	not	fully	appreciated.	For	instance,	the
transformation	1/x	reduces	the	magnitude	of	values	that	are	1	or	larger,	but
increases	the	magnitude	of	values	between	0	and	1.	To	illustrate,	the	values
{1,	2,	3}	go	to	 	but	the	values	 	go	to	{1,	2,	3}.	Thus,	for
all	sets	of	values,	the	transformation	1/x	reverses	the	order.	To	help	clarify	the
effect	of	a	transformation,	it	is	important	to	ask	questions	such	as	the
following:	What	is	the	desired	property	of	the	transformed	attribute?	Does	the
order	need	to	be	maintained?	Does	the	transformation	apply	to	all	values,
especially	negative	values	and	0?	What	is	the	effect	of	the	transformation	on
the	values	between	0	and	1?	Exercise	17 	on	page	109 	explores	other
aspects	of	variable	transformation.

Normalization	or	Standardization
The	goal	of	standardization	or	normalization	is	to	make	an	entire	set	of	values
have	a	particular	property.	A	traditional	example	is	that	of	“standardizing	a
variable”	in	statistics.	If	 	is	the	mean	(average)	of	the	attribute	values	and	
is	their	standard	deviation,	then	the	transformation	 	creates	a	new

10

108 109
(9−8=1	versus	3−1=3).

{	1,	12,	13	}, {	1,	12,	13	}

x¯ sx
x′=(x−x¯)/sx

variable	that	has	a	mean	of	0	and	a	standard	deviation	of	1.	If	different
variables	are	to	be	used	together,	e.g.,	for	clustering,	then	such	a
transformation	is	often	necessary	to	avoid	having	a	variable	with	large	values
dominate	the	results	of	the	analysis.	To	illustrate,	consider	comparing	people
based	on	two	variables:	age	and	income.	For	any	two	people,	the	difference	in
income	will	likely	be	much	higher	in	absolute	terms	(hundreds	or	thousands	of
dollars)	than	the	difference	in	age	(less	than	150).	If	the	differences	in	the
range	of	values	of	age	and	income	are	not	taken	into	account,	then	the
comparison	between	people	will	be	dominated	by	differences	in	income.	In
particular,	if	the	similarity	or	dissimilarity	of	two	people	is	calculated	using	the
similarity	or	dissimilarity	measures	defined	later	in	this	chapter,	then	in	many
cases,	such	as	that	of	Euclidean	distance,	the	income	values	will	dominate
the	calculation.

The	mean	and	standard	deviation	are	strongly	affected	by	outliers,	so	the
above	transformation	is	often	modified.	First,	the	mean	is	replaced	by	the
median,	i.e.,	the	middle	value.	Second,	the	standard	deviation	is	replaced	by
the	absolute	standard	deviation.	Specifically,	if	x	is	a	variable,	then	the
absolute	standard	deviation	of	x	is	given	by	 	where	 	is	the
	value	of	the	variable,	m	is	the	number	of	objects,	and	 	is	either	the	mean

or	median.	Other	approaches	for	computing	estimates	of	the	location	(center)
and	spread	of	a	set	of	values	in	the	presence	of	outliers	are	described	in
statistics	books.	These	more	robust	measures	can	also	be	used	to	define	a
standardization	transformation.

σA=∑i=1m|xi−μ|, xi
ith μ

