
1.1	What	Is	Data	Mining?
Data	mining	is	the	process	of	automatically	discovering	useful	information	in
large	data	repositories.	Data	mining	techniques	are	deployed	to	scour	large
data	sets	in	order	to	find	novel	and	useful	patterns	that	might	otherwise
remain	unknown.	They	also	provide	the	capability	to	predict	the	outcome	of	a
future	observation,	such	as	the	amount	a	customer	will	spend	at	an	online	or	a
brick-and-mortar	store.

Not	all	information	discovery	tasks	are	considered	to	be	data	mining.
Examples	include	queries,	e.g.,	looking	up	individual	records	in	a	database	or
finding	web	pages	that	contain	a	particular	set	of	keywords.	This	is	because
such	tasks	can	be	accomplished	through	simple	interactions	with	a	database
management	system	or	an	information	retrieval	system.	These	systems	rely
on	traditional	computer	science	techniques,	which	include	sophisticated
indexing	structures	and	query	processing	algorithms,	for	efficiently	organizing
and	retrieving	information	from	large	data	repositories.	Nonetheless,	data
mining	techniques	have	been	used	to	enhance	the	performance	of	such
systems	by	improving	the	quality	of	the	search	results	based	on	their
relevance	to	the	input	queries.

Data	Mining	and	Knowledge	Discovery	in
Databases
Data	mining	is	an	integral	part	of	knowledge	discovery	in	databases	(KDD),
which	is	the	overall	process	of	converting	raw	data	into	useful	information,	as
shown	in	Figure	1.1 .	This	process	consists	of	a	series	of	steps,	from	data
preprocessing	to	postprocessing	of	data	mining	results.



Figure	1.1.
The	process	of	knowledge	discovery	in	databases	(KDD).

The	input	data	can	be	stored	in	a	variety	of	formats	(flat	files,	spreadsheets,	or
relational	tables)	and	may	reside	in	a	centralized	data	repository	or	be
distributed	across	multiple	sites.	The	purpose	of	preprocessing	is	to
transform	the	raw	input	data	into	an	appropriate	format	for	subsequent
analysis.	The	steps	involved	in	data	preprocessing	include	fusing	data	from
multiple	sources,	cleaning	data	to	remove	noise	and	duplicate	observations,
and	selecting	records	and	features	that	are	relevant	to	the	data	mining	task	at
hand.	Because	of	the	many	ways	data	can	be	collected	and	stored,	data
preprocessing	is	perhaps	the	most	laborious	and	time-consuming	step	in	the
overall	knowledge	discovery	process.

“Closing	the	loop”	is	a	phrase	often	used	to	refer	to	the	process	of	integrating
data	mining	results	into	decision	support	systems.	For	example,	in	business
applications,	the	insights	offered	by	data	mining	results	can	be	integrated	with
campaign	management	tools	so	that	effective	marketing	promotions	can	be
conducted	and	tested.	Such	integration	requires	a	postprocessing	step	to
ensure	that	only	valid	and	useful	results	are	incorporated	into	the	decision
support	system.	An	example	of	postprocessing	is	visualization,	which	allows
analysts	to	explore	the	data	and	the	data	mining	results	from	a	variety	of
viewpoints.	Hypothesis	testing	methods	can	also	be	applied	during



1.2	Motivating	Challenges
As	mentioned	earlier,	traditional	data	analysis	techniques	have	often
encountered	practical	difficulties	in	meeting	the	challenges	posed	by	big	data
applications.	The	following	are	some	of	the	specific	challenges	that	motivated
the	development	of	data	mining.

Scalability

Because	of	advances	in	data	generation	and	collection,	data	sets	with	sizes	of
terabytes,	petabytes,	or	even	exabytes	are	becoming	common.	If	data	mining
algorithms	are	to	handle	these	massive	data	sets,	they	must	be	scalable.
Many	data	mining	algorithms	employ	special	search	strategies	to	handle
exponential	search	problems.	Scalability	may	also	require	the	implementation
of	novel	data	structures	to	access	individual	records	in	an	efficient	manner.
For	instance,	out-of-core	algorithms	may	be	necessary	when	processing	data
sets	that	cannot	fit	into	main	memory.	Scalability	can	also	be	improved	by
using	sampling	or	developing	parallel	and	distributed	algorithms.	A	general
overview	of	techniques	for	scaling	up	data	mining	algorithms	is	given	in
Appendix	F.

High	Dimensionality

It	is	now	common	to	encounter	data	sets	with	hundreds	or	thousands	of
attributes	instead	of	the	handful	common	a	few	decades	ago.	In
bioinformatics,	progress	in	microarray	technology	has	produced	gene
expression	data	involving	thousands	of	features.	Data	sets	with	temporal	or
spatial	components	also	tend	to	have	high	dimensionality.	For	example,



consider	a	data	set	that	contains	measurements	of	temperature	at	various
locations.	If	the	temperature	measurements	are	taken	repeatedly	for	an
extended	period,	the	number	of	dimensions	(features)	increases	in	proportion
to	the	number	of	measurements	taken.	Traditional	data	analysis	techniques
that	were	developed	for	low-dimensional	data	often	do	not	work	well	for	such
high-dimensional	data	due	to	issues	such	as	curse	of	dimensionality	(to	be
discussed	in	Chapter	2 ).	Also,	for	some	data	analysis	algorithms,	the
computational	complexity	increases	rapidly	as	the	dimensionality	(the	number
of	features)	increases.

Heterogeneous	and	Complex	Data

Traditional	data	analysis	methods	often	deal	with	data	sets	containing
attributes	of	the	same	type,	either	continuous	or	categorical.	As	the	role	of
data	mining	in	business,	science,	medicine,	and	other	fields	has	grown,	so
has	the	need	for	techniques	that	can	handle	heterogeneous	attributes.	Recent
years	have	also	seen	the	emergence	of	more	complex	data	objects.
Examples	of	such	non-traditional	types	of	data	include	web	and	social	media
data	containing	text,	hyperlinks,	images,	audio,	and	videos;	DNA	data	with
sequential	and	three-dimensional	structure;	and	climate	data	that	consists	of
measurements	(temperature,	pressure,	etc.)	at	various	times	and	locations	on
the	Earth’s	surface.	Techniques	developed	for	mining	such	complex	objects
should	take	into	consideration	relationships	in	the	data,	such	as	temporal	and
spatial	autocorrelation,	graph	connectivity,	and	parent-child	relationships
between	the	elements	in	semi-structured	text	and	XML	documents.

Data	Ownership	and	Distribution

Sometimes,	the	data	needed	for	an	analysis	is	not	stored	in	one	location	or
owned	by	one	organization.	Instead,	the	data	is	geographically	distributed
among	resources	belonging	to	multiple	entities.	This	requires	the	development



of	distributed	data	mining	techniques.	The	key	challenges	faced	by	distributed
data	mining	algorithms	include	the	following:	(1)	how	to	reduce	the	amount	of
communication	needed	to	perform	the	distributed	computation,	(2)	how	to
effectively	consolidate	the	data	mining	results	obtained	from	multiple	sources,
and	(3)	how	to	address	data	security	and	privacy	issues.

Non-traditional	Analysis

The	traditional	statistical	approach	is	based	on	a	hypothesize-and-test
paradigm.	In	other	words,	a	hypothesis	is	proposed,	an	experiment	is
designed	to	gather	the	data,	and	then	the	data	is	analyzed	with	respect	to	the
hypothesis.	Unfortunately,	this	process	is	extremely	labor-intensive.	Current
data	analysis	tasks	often	require	the	generation	and	evaluation	of	thousands
of	hypotheses,	and	consequently,	the	development	of	some	data	mining
techniques	has	been	motivated	by	the	desire	to	automate	the	process	of
hypothesis	generation	and	evaluation.	Furthermore,	the	data	sets	analyzed	in
data	mining	are	typically	not	the	result	of	a	carefully	designed	experiment	and
often	represent	opportunistic	samples	of	the	data,	rather	than	random
samples.



1.3	The	Origins	of	Data	Mining
While	data	mining	has	traditionally	been	viewed	as	an	intermediate	process
within	the	KDD	framework,	as	shown	in	Figure	1.1 ,	it	has	emerged	over	the
years	as	an	academic	field	within	computer	science,	focusing	on	all	aspects	of
KDD,	including	data	preprocessing,	mining,	and	postprocessing.	Its	origin	can
be	traced	back	to	the	late	1980s,	following	a	series	of	workshops	organized
on	the	topic	of	knowledge	discovery	in	databases.	The	workshops	brought
together	researchers	from	different	disciplines	to	discuss	the	challenges	and
opportunities	in	applying	computational	techniques	to	extract	actionable
knowledge	from	large	databases.	The	workshops	quickly	grew	into	hugely
popular	conferences	that	were	attended	by	researchers	and	practitioners	from
both	the	academia	and	industry.	The	success	of	these	conferences,	along
with	the	interest	shown	by	businesses	and	industry	in	recruiting	new	hires	with
data	mining	background,	have	fueled	the	tremendous	growth	of	this	field.

The	field	was	initially	built	upon	the	methodology	and	algorithms	that
researchers	had	previously	used.	In	particular,	data	mining	researchers	draw
upon	ideas,	such	as	(1)	sampling,	estimation,	and	hypothesis	testing	from
statistics	and	(2)	search	algorithms,	modeling	techniques,	and	learning
theories	from	artificial	intelligence,	pattern	recognition,	and	machine	learning.
Data	mining	has	also	been	quick	to	adopt	ideas	from	other	areas,	including
optimization,	evolutionary	computing,	information	theory,	signal	processing,
visualization,	and	information	retrieval,	and	extending	them	to	solve	the
challenges	of	mining	big	data.

A	number	of	other	areas	also	play	key	supporting	roles.	In	particular,	database
systems	are	needed	to	provide	support	for	efficient	storage,	indexing,	and
query	processing.	Techniques	from	high	performance	(parallel)	computing	are



often	important	in	addressing	the	massive	size	of	some	data	sets.	Distributed
techniques	can	also	help	address	the	issue	of	size	and	are	essential	when	the
data	cannot	be	gathered	in	one	location.	Figure	1.2 	shows	the	relationship
of	data	mining	to	other	areas.

Figure	1.2.
Data	mining	as	a	confluence	of	many	disciplines.

Data	Science	and	Data-Driven	Discovery
Data	science	is	an	interdisciplinary	field	that	studies	and	applies	tools	and
techniques	for	deriving	useful	insights	from	data.	Although	data	science	is
regarded	as	an	emerging	field	with	a	distinct	identity	of	its	own,	the	tools	and
techniques	often	come	from	many	different	areas	of	data	analysis,	such	as
data	mining,	statistics,	AI,	machine	learning,	pattern	recognition,	database
technology,	and	distributed	and	parallel	computing.	(See	Figure	1.2 .)

The	emergence	of	data	science	as	a	new	field	is	a	recognition	that,	often,
none	of	the	existing	areas	of	data	analysis	provides	a	complete	set	of	tools	for
the	data	analysis	tasks	that	are	often	encountered	in	emerging	applications.



Instead,	a	broad	range	of	computational,	mathematical,	and	statistical	skills	is
often	required.	To	illustrate	the	challenges	that	arise	in	analyzing	such	data,
consider	the	following	example.	Social	media	and	the	Web	present	new
opportunities	for	social	scientists	to	observe	and	quantitatively	measure
human	behavior	on	a	large	scale.	To	conduct	such	a	study,	social	scientists
work	with	analysts	who	possess	skills	in	areas	such	as	web	mining,	natural
language	processing	(NLP),	network	analysis,	data	mining,	and	statistics.
Compared	to	more	traditional	research	in	social	science,	which	is	often	based
on	surveys,	this	analysis	requires	a	broader	range	of	skills	and	tools,	and
involves	far	larger	amounts	of	data.	Thus,	data	science	is,	by	necessity,	a
highly	interdisciplinary	field	that	builds	on	the	continuing	work	of	many	fields.

The	data-driven	approach	of	data	science	emphasizes	the	direct	discovery	of
patterns	and	relationships	from	data,	especially	in	large	quantities	of	data,
often	without	the	need	for	extensive	domain	knowledge.	A	notable	example	of
the	success	of	this	approach	is	represented	by	advances	in	neural	networks,
i.e.,	deep	learning,	which	have	been	particularly	successful	in	areas	which
have	long	proved	challenging,	e.g.,	recognizing	objects	in	photos	or	videos
and	words	in	speech,	as	well	as	in	other	application	areas.	However,	note	that
this	is	just	one	example	of	the	success	of	data-driven	approaches,	and
dramatic	improvements	have	also	occurred	in	many	other	areas	of	data
analysis.	Many	of	these	developments	are	topics	described	later	in	this	book.

Some	cautions	on	potential	limitations	of	a	purely	data-driven	approach	are
given	in	the	Bibliographic	Notes.



1.4	Data	Mining	Tasks
Data	mining	tasks	are	generally	divided	into	two	major	categories:

Predictive	tasks	The	objective	of	these	tasks	is	to	predict	the	value	of	a
particular	attribute	based	on	the	values	of	other	attributes.	The	attribute	to	be
predicted	is	commonly	known	as	the	target	or	dependent	variable,	while	the
attributes	used	for	making	the	prediction	are	known	as	the	explanatory	or
independent	variables.

Descriptive	tasks	Here,	the	objective	is	to	derive	patterns	(correlations,
trends,	clusters,	trajectories,	and	anomalies)	that	summarize	the	underlying
relationships	in	data.	Descriptive	data	mining	tasks	are	often	exploratory	in
nature	and	frequently	require	postprocessing	techniques	to	validate	and
explain	the	results.

Figure	1.3 	illustrates	four	of	the	core	data	mining	tasks	that	are	described
in	the	remainder	of	this	book.



Figure	1.3.
Four	of	the	core	data	mining	tasks.

Predictive	modeling	refers	to	the	task	of	building	a	model	for	the	target
variable	as	a	function	of	the	explanatory	variables.	There	are	two	types	of
predictive	modeling	tasks:	classification,	which	is	used	for	discrete	target
variables,	and	regression,	which	is	used	for	continuous	target	variables.	For
example,	predicting	whether	a	web	user	will	make	a	purchase	at	an	online
bookstore	is	a	classification	task	because	the	target	variable	is	binary-valued.
On	the	other	hand,	forecasting	the	future	price	of	a	stock	is	a	regression	task
because	price	is	a	continuous-valued	attribute.	The	goal	of	both	tasks	is	to
learn	a	model	that	minimizes	the	error	between	the	predicted	and	true	values
of	the	target	variable.	Predictive	modeling	can	be	used	to	identify	customers
who	will	respond	to	a	marketing	campaign,	predict	disturbances	in	the	Earth’s



ecosystem,	or	judge	whether	a	patient	has	a	particular	disease	based	on	the
results	of	medical	tests.

Example	1.1	(Predicting	the	Type	of	a	Flower).
Consider	the	task	of	predicting	a	species	of	flower	based	on	the
characteristics	of	the	flower.	In	particular,	consider	classifying	an	Iris	flower
as	one	of	the	following	three	Iris	species:	Setosa,	Versicolour,	or	Virginica.
To	perform	this	task,	we	need	a	data	set	containing	the	characteristics	of
various	flowers	of	these	three	species.	A	data	set	with	this	type	of
information	is	the	well-known	Iris	data	set	from	the	UCI	Machine	Learning
Repository	at	http://www.ics.uci.edu/~mlearn.	In	addition	to	the	species
of	a	flower,	this	data	set	contains	four	other	attributes:	sepal	width,	sepal
length,	petal	length,	and	petal	width.	Figure	1.4 	shows	a	plot	of	petal
width	versus	petal	length	for	the	150	flowers	in	the	Iris	data	set.	Petal	width
is	broken	into	the	categories	low,	medium,	and	high,	which	correspond	to
the	intervals	[0,	0.75),	[0.75,	1.75),	 ,	respectively.	Also,	petal
length	is	broken	into	categories	low,	medium,and	high,	which	correspond
to	the	intervals	[0,	2.5),	[2.5,	5),	 ,	respectively.	Based	on	these
categories	of	petal	width	and	length,	the	following	rules	can	be	derived:

Petal	width	low	and	petal	length	low	implies	Setosa.

Petal	width	medium	and	petal	length	medium	implies	Versicolour.

Petal	width	high	and	petal	length	high	implies	Virginica.

While	these	rules	do	not	classify	all	the	flowers,	they	do	a	good	(but	not
perfect)	job	of	classifying	most	of	the	flowers.	Note	that	flowers	from	the
Setosa	species	are	well	separated	from	the	Versicolour	and	Virginica
species	with	respect	to	petal	width	and	length,	but	the	latter	two	species
overlap	somewhat	with	respect	to	these	attributes.

[1.75,	∞)

[5,	∞)

http://www.ics.uci.edu/~mlearn


Figure	1.4.
Petal	width	versus	petal	length	for	150	Iris	flowers.

Association	analysis	is	used	to	discover	patterns	that	describe	strongly
associated	features	in	the	data.	The	discovered	patterns	are	typically
represented	in	the	form	of	implication	rules	or	feature	subsets.	Because	of	the
exponential	size	of	its	search	space,	the	goal	of	association	analysis	is	to
extract	the	most	interesting	patterns	in	an	efficient	manner.	Useful	applications
of	association	analysis	include	finding	groups	of	genes	that	have	related
functionality,	identifying	web	pages	that	are	accessed	together,	or
understanding	the	relationships	between	different	elements	of	Earth’s	climate
system.

Example	1.2	(Market	Basket	Analysis).



The	transactions	shown	in	Table	1.1 	illustrate	point-of-sale	data
collected	at	the	checkout	counters	of	a	grocery	store.	Association	analysis
can	be	applied	to	find	items	that	are	frequently	bought	together	by
customers.	For	example,	we	may	discover	the	rule	 ,
which	suggests	that	customers	who	buy	diapers	also	tend	to	buy	milk.	This
type	of	rule	can	be	used	to	identify	potential	cross-selling	opportunities
among	related	items.

Table	1.1.	Market	basket	data.

Transaction	ID Items

1 {Bread,	Butter,	Diapers,	Milk}

2 {Coffee,	Sugar,	Cookies,	Salmon}

3 {Bread,	Butter,	Coffee,	Diapers,	Milk,	Eggs}

4 {Bread,	Butter,	Salmon,	Chicken}

5 {Eggs,	Bread,	Butter}

6 {Salmon,	Diapers,	Milk}

7 {Bread,	Tea,	Sugar,	Eggs}

8 {Coffee,	Sugar,	Chicken,	Eggs}

9 {Bread,	Diapers,	Milk,	Salt}

10 {Tea,	Eggs,	Cookies,	Diapers,	Milk}

Cluster	analysis	seeks	to	find	groups	of	closely	related	observations	so	that
observations	that	belong	to	the	same	cluster	are	more	similar	to	each	other
than	observations	that	belong	to	other	clusters.	Clustering	has	been	used	to

{Diapers}→{Milk}



group	sets	of	related	customers,	find	areas	of	the	ocean	that	have	a
significant	impact	on	the	Earth’s	climate,	and	compress	data.

Example	1.3	(Document	Clustering).
The	collection	of	news	articles	shown	in	Table	1.2 	can	be	grouped
based	on	their	respective	topics.	Each	article	is	represented	as	a	set	of
word-frequency	pairs	(w	:	c),	where	w	is	a	word	and	c	is	the	number	of
times	the	word	appears	in	the	article.	There	are	two	natural	clusters	in	the
data	set.	The	first	cluster	consists	of	the	first	four	articles,	which
correspond	to	news	about	the	economy,	while	the	second	cluster	contains
the	last	four	articles,	which	correspond	to	news	about	health	care.	A	good
clustering	algorithm	should	be	able	to	identify	these	two	clusters	based	on
the	similarity	between	words	that	appear	in	the	articles.

Table	1.2.	Collection	of	news	articles.

Article Word-frequency	pairs

1 dollar:	1,	industry:	4,	country:	2,	loan:	3,	deal:	2,	government:	2

2 machinery:	2,	labor:	3,	market:	4,	industry:	2,	work:	3,	country:	1

3 job:	5,	inflation:	3,	rise:	2,	jobless:	2,	market:	3,	country:	2,	index:	3

4 domestic:	3,	forecast:	2,	gain:	1,	market:	2,	sale:	3,	price:	2

5 patient:	4,	symptom:	2,	drug:	3,	health:	2,	clinic:	2,	doctor:	2

6 pharmaceutical:	2,	company:	3,	drug:	2,	vaccine:	1,	flu:	3

7 death:	2,	cancer:	4,	drug:	3,	public:	4,	health:	3,	director:	2

8 medical:	2,	cost:	3,	increase:	2,	patient:	2,	health:	3,	care:	1



Anomaly	detection	is	the	task	of	identifying	observations	whose
characteristics	are	significantly	different	from	the	rest	of	the	data.	Such
observations	are	known	as	anomalies	or	outliers.	The	goal	of	an	anomaly
detection	algorithm	is	to	discover	the	real	anomalies	and	avoid	falsely	labeling
normal	objects	as	anomalous.	In	other	words,	a	good	anomaly	detector	must
have	a	high	detection	rate	and	a	low	false	alarm	rate.	Applications	of	anomaly
detection	include	the	detection	of	fraud,	network	intrusions,	unusual	patterns
of	disease,	and	ecosystem	disturbances,	such	as	droughts,	floods,	fires,
hurricanes,	etc.

Example	1.4	(Credit	Card	Fraud	Detection).
A	credit	card	company	records	the	transactions	made	by	every	credit	card
holder,	along	with	personal	information	such	as	credit	limit,	age,	annual
income,	and	address.	Since	the	number	of	fraudulent	cases	is	relatively
small	compared	to	the	number	of	legitimate	transactions,	anomaly
detection	techniques	can	be	applied	to	build	a	profile	of	legitimate
transactions	for	the	users.	When	a	new	transaction	arrives,	it	is	compared
against	the	profile	of	the	user.	If	the	characteristics	of	the	transaction	are
very	different	from	the	previously	created	profile,	then	the	transaction	is
flagged	as	potentially	fraudulent.
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